Exploring the properties of neotropical funga: chemical profile, antioxidant and antimicrobial activities of Stiptophyllum erubescens (Berk.) Ryvarden
DOI:
https://doi.org/10.56152/StevianaFacenV14N2A1_2022Keywords:
Antimicrobials, antioxidants, phenolic compounds, secondary metabolitesAbstract
Striptophyllum erubescens is a neotropical basidiomycete widely distributed in South America. However, no records of its biological properties were found. Therefore, this work constitutes the first study of the chemical profile and of the antioxidant and antimicrobial properties of S. erubescens. A crude ethanolic extract and fractions with solvents of different polarities (hexane, ethyl ether, ethyl acetate, and aqueous residue) were obtained from wild basidiomata. Total phenols content and DPPH assays were performed. GC-MS was deployed to analyze the chemical composition of the fractions with the highest concentration of phenolic and antioxidant compounds. Antimicrobial activity was evaluated through the disk diffusion test. The ethyl caracteriacetate fraction obtained the highest concentration of phenolic and antioxidant compounds (172 ± 4 mg GAE g-1, and 185 mg AAE g-1, respectively), and antioxidant activity (85%). Alkanes and their derivatives, fatty acids, fatty alcohols, phenols, and a benzofuran derivative were found through GC-MS in the ethyl acetate and ethyl ether fractions. For the first time in a basidiomycete, 5-methyl-1-(2, 6, 6-trimethylcyclohexa-2,4 dien-1-yl)hexa-1,4-dien-3-one is reported. Neither crude extract nor fractions showed antimicrobial activity.
Downloads
References
Balachandar, R., Karmegam, N., Saravanan, M., Subbaiya, R., & Gurumoorthy, P. (2018). Synthesis of bioactive compounds from vermicast isolated actinomycetes species and its antimicrobial activity against human pathogenic bacteria. Microbial Pathogenesis, 121, 155-165. https://doi.org/10.1016/j.micpath.2018.05.027
Barros, L., Dueñas, M., Ferreira, I. C., Baptista, P., & Santos-Buelga, C. (2009). Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food and Chemical Toxicology, 47(6), 1076-1079. https://doi.org/10.1016/j.fct.2009.01.039
Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, 45(4), 493–496.
Bononi, V. L. (1992). Fungos macroscopicos de Rio Branco, Acre, Brasil. Hoehnea, 19, 31-37.
Campi, M., Mancuello, C., Ferreira, F., Maubet, Y., Cristaldo, E., & Benítez, D. (2019). Preliminary evaluation of phenolic compounds, antioxidant activity and bioactive compounds in some species of basidiomycetes fungi from Paraguay. Steviana, 11(1), 26–41. https://doi.org/10.56152/ffs.v11i1.1033
Campi, M., Mancuello, C., Ferreira, F., Maubet, Y., Cristaldo, E., & Robledo, G. (2021). Bioactive Compounds and Antioxidant Activity of Four Native Species of the Ganodermataceae Family (Agaricomycetes) from Paraguay. International journal of medicinal mushrooms, 23(8), 65–76. https://doi.org/10.1615/IntJMedMushrooms.2021039298
Campos-Santana, M., & Loguercio-Leite, C. (2008). A note on Stiptophyllum erubescens. Mycotaxon, 106, 127–132.
Chang, S. T., & Wasser, S. P. (2012). The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. International journal of medicinal mushrooms, 14(2), 95–134. https://doi.org/10.1615/intjmedmushr.v14.i2.10
Chowdhary, K., & Kaushik, N. (2018). Biodiversity study and potential of fungal endophytes of peppermint and effect of their extract on chickpea rot pathogens. Archives of Phytopathology and Plant Protection, 51, 139-155. https://doi.org/10.1080/03235408.2018.1440707
Drechsler-Santos RS. (2005). Inventário de Basidiomycetes Lignolíticos em Santa Catarina: Guia Eletrônico. Dissertação (Mestrado em Biologia Vegetal), Universidade Federal de Santa Catarina.
Fidalgo, M.E.P.K. (1968). Contribuition to the fungi of Mato Grosso, Brasil. Rickia, 3, 171-219.
Gilbertoni, T.B., Ryvarden, L., & Cavalcanti, M.A.Q. (2004). Studies in neotropical polypores 18. New species from Brazil. Synopsis Fungorum, 18, 44–56.
Goren, A. C., Piozzi, F., Akcicek, E., Kılıç, T., Çarıkçı, S., Mozioğlu, E., & Setzer, W. N. (2011). Essential oil composition of twenty-two Stachys species (mountain tea) and their biological activities. Phytochemistry Letters, 4(4), 448-453. https://doi.org/10.1016/j.phytol.2011.04.013
Heleno, S. A., Barros, L., Martins, A., Queiroz, M. J. R., Santos-Buelga, C., & Ferreira, I. C. (2012). Fruiting body, spores and in vitro produced mycelium of Ganoderma lucidum from Northeast Portugal: A comparative study of the antioxidant potential of phenolic and polysaccharidic extracts. Food Research International, 46(1), 135-140. https://doi.org/10.1016/j.foodres.2011.12.009
Humphries, R. M., Pollett, S., & Sakoulas, G. (2013). A current perspective on daptomycin for the clinical microbiologist. Clinical microbiology reviews, 26(4), 759–780. https://doi.org/10.1128/CMR.00030-13
Imada, C. (2005) Enzyme inhibitors and other bioactive compounds from marine Actinomycetes. Antonie Van Leeuwenhoek, 87(1), 59–63. https://doi.org/10.1007/s10482-004-6544-x
Jasso de Rodríguez, D., Salas-Méndez, E. de J., Rodríguez-García, R., Hernández-Castillo, F. D., Díaz-Jiménez, M. L. V., Sáenz-Galindo, A., González-Morales, S., Flores-López, M.L., Villarreal-Quintanilla, J.A., Peña-Ramos, F.M., & Carrillo-Lomelí, D. A. (2017). Antifungal activity in vitro of ethanol and aqueous extracts of leaves and branches of Flourensia spp. against postharvest fungi. Industrial Crops and Products, 107, 499–508. https://doi.org/10.1016/j.indcrop.2017.04.054
Khatana, K. & Gupta, A. (2020). An update on natural occurrence and Biological Activity of Benzofurans. Acta Scientific Medical Sciences, 4(10), 114-123.
Lira, M. H. P. D., Andrade Júnior, F. P. D., Moraes, G. F. Q., Macena, G. D. S., Pereira, F. D. O., & Lima, I. O. (2020). Antimicrobial activity of geraniol: an integrative review. Journal of Essential Oil Research, 32(3), 187-197. https://doi.org/10.1080/10412905.2020.1745697
Lu, H., Lou, H., Hu, J., Liu, Z., & Chen, Q. (2020). Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Comprehensive reviews in food science and food safety, 19(5), 2333-2356. https://doi.org/10.1111/1541-4337.12602
Ma, Gaoxing; Wenjian, Yang; Liyan, Zhao; Fei, Pei; Donglu, Fang; Qiuhui, Hu (2018). A Critical Review on the Health Promoting Effects of Mushrooms Nutraceuticals. Food Science and Human Wellness 7, 125–133. https://doi.org/10.1016/j.fshw.2018.05.002
Miao, Y. H., Hu, Y. H., Yang, J., Liu, T., Sun, J., & Wang, X. J. (2019). Natural source, bioactivity and synthesis of benzofuran derivatives. RSC advances, 9(47), 27510-27540.
Moreno, S., Scheyer, T., Romano, C. S., & Vojnov, A. A. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free radical research, 40(2), 223–231. https://doi.org/10.1080/10715760500473834
Popoff, O.F. (2003). Notes on Daedalea erubescens, Hexagonia decipiens and the Phaeotrametaceae. Mycotaxon, 87, 103-108.
Ranadive, K. R., Belsare, M. H., Deokule, S. S., Jagtap, N. V. , Jadhav H.K., & Vaidya J.G. (2013). Glimpses of antimicrobial activity of fungi from World. Journal on New Biological Reports, 2(2), 142–162.
Robledo, G.L., Palacio, M., Urcelay, C., Vasco-Palacios, A.M., Crespo, E., Popoff, O., Põldmaa, K., Ryvarden, L., & Costa-Rezende, D.H. (2020). Mystery unveiled: Diacanthodes Singer – a lineage within the core polyporoid clade. Systematics and Biodiversity, 18(6), 538-556. https://doi.org/10.1080/14772000.2020.1776784
Ryvarden, L. (1973). New Genera in the Polyporaceae. Norwegian Journal of Botany, 20, 1–5.
Ryvarden, L. (1991). Genera of Polypores – Nomenclature and taxonomy. Synopsis Fungorum, 5, 1–363.
Ryvarden, L., Iturriaga, T. (2001). Studies in Neotropical Polypores 9. A Critical Checklist of Poroid Fungi from Venezuela. Mycotaxon, 78, 393–405.
Sande, D., Oliveira, G.P., Moura, M.A., Martins, B.D., Lima, M.T., & Takahashi, J.A. (2019). Edible mushrooms as a ubiquitous source of essential fatty acids. Food research international, 125, 108524. https://doi.org/10.1016/j.foodres.2019.108524
Sulkowska-Ziaja, K., Muszynska, B., Motyl, P., Pasko, P., & Ekiert, H. (2012). Phenolic compounds and antioxidant activity in some species of polyporoid mushrooms from Poland. International journal of medicinal mushrooms, 14(4), 385–393. https://doi.org/10.1615/intjmedmushr.v14.i4.60
Tiwari, P., Kumar, B., Kaur, M., Kaur, G., & Kaur, H. (2011). Phytochemical screening and extraction: a review. Internationale pharmaceutica sciencia, 1(1), 98-106.
Turkoglu, A., Duru, M. E., Mercan, N., Kivrak, I., & Gezer, K. (2007). Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chemistry, 101(1), 267-273. https://doi.org/10.1016/j.foodchem.2006.01.025
Wei, L. S., Wee, W., Siong, J. Y., & Syamsumir, D. F. (2011). Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta medica Iranica, 49(10), 670–674.
Wright, J.E., & Deschamps, J.R. (1977). Basidiomicetos xilófilos de la Región Mesopotámica III. Los Géneros Bjerkandera, Gloeophyllum, Gloeoporus, Hirschioporus, Hydnopolyporus, Phaeocoriolellus, Pycnoporus y Xerotinus. Revista de Investigaciones Agropecuarias INTA 5, 13(1), 27–70.
Zeb, M., & Lee, C.H. (2021). Medicinal Properties and Bioactive Compounds from Wild Mushrooms Native to North America. Molecules, 26(2), 251. https://doi.org/10.3390/molecules26020251
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Steviana
This work is licensed under a Creative Commons Attribution 4.0 International License.