Effectiveness of biological, botanical and synthetic products in the control of onion (Allium cepa) wilt caused by Fusarium sp. Resources for integrated management

Autores/as

  • José Francisco Díaz-Nájera Departamento de Fitotecnia, Centro de Estudios Profesionales del Colegio Superior Agropecuario del Estado de Guerrero, Cocula, México https://orcid.org/0000-0001-7181-9425
  • Sergio Ayvar-Serna Departamento de Fitotecnia, Centro de Estudios Profesionales del Colegio Superior Agropecuario del Estado de Guerrero, Cocula, México.
  • Mateo Vargas-Hernández Departamento de Suelos, Universidad Autónoma Chapingo, Texcoco, México.
  • Andrés Dejesús Sanabria-Velázquez Centro de Desarrollo e Innovación Tecnológica, Hohenau, Paraguay
  • Celene Mayahuel Cerezo-Aparicio Departamento de Fitotecnia, Centro de Estudios Profesionales del Colegio Superior Agropecuario del Estado de Guerrero, Cocula, México
  • Guillermo Andrés Enciso-Maldonado Centro de Desarrollo e Innovación Tecnológica, Km 38 Ruta VI, Hohenau, Itapúa, Paraguay

DOI:

https://doi.org/10.56152/StevianaFacenV14N1A4_2022

Palabras clave:

Allium cepa L., Trichoderma spp., plant extracts, chemical fungicides

Resumen

Onion wilt is an endemic disease in farms of horticulture production in Michoacán, Mexico. This disease can reduce yields by up to 25-30%. A monosporic isolate of the fungus Fusarium spp. was obtained from onion plants with wilting symptoms, and its pathogenicity was verified. The fungus was morphologically and molecularly identified using the ITS region of reference. Also, Fusarium sp. susceptibility to biological, botanical, and chemical pesticides was assessed through four different bioassays. In experiment I, Trichoderma spp. in vitro antibiosis was tested using the cellophane technique. In Trials II and III, the in vitro effect of botanical and chemical fungicides on the pathogen was evaluated through the amended potato dextrose agar (PDA) culture technique. In Trial IV, the efficacy of the products selected during in vitro assays was evaluated under greenhouse conditions. During the antibiosis trials, the commercial strain of Trichoderma virens (PHC Root Mate®) inhibited 33.3% of Fusarium sp. mycelial growth. Among botanical pesticides, cinnamon-neem extract (NeemAcar®) at doses of 0.06, 0.08- and 0.10-mL L-1 inhibited 100% mycelial growth of Fusarium sp. The fungicides benomyl, prochloraz, and pyraclostrobin completely suppressed Fusarium sp. development. Under greenhouse conditions, the incidence of wilt of plants treated with Trichoderma spp. and botanical extracts applied individually and in combination, did not present significant differences from plants treated with chemical fungicides. These results will help to develop an integrated disease management program for onion wilt. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ayvar-Serna, S., Díaz-Nájera, J. F., Vargas-Hernández, M., Enciso-Maldonado, G. A., Alvarado-Gómez, O. G., & Ortíz-Martínez, A. I. (2021). Actividad antifúngica de pesticidas biológicos, botánicos y químicos sobre el agente causal de la marchitez vascular del jitomate. Revista Fitotecnia Mexicana, 44(4), 617-617. https://revfitotecnia.mx/index.php/RFM/article/view/896/852

Bayraktar, H. and Dolar, F. S. (2011). Molecular identification and genetic diversity of Fusarium species associated with onion fields in Turkey. Journal of Phytopathology, 159(1): 28-34.

Bhunjun, C.S., Phillips, A.J., Jayawardena, R.S., Promputtha, I. and Hyde, K.D. (2021). Importance of molecular data to identify fungal plant pathogens and guidelines for pathogenicity testing based on Koch’s Postulates. Pathogens, 10(9), p.1096.

Chouhan, S., Sharma, K. and Guleria, S. (2017). Antimicrobial activity of some essential oils-present status and future perspectives. Medicines, 4(3): 58.

Cubilla-Ríos, A. A., Ruíz-Díaz-Mendoza, D. D., Romero-Rodríguez, M. C., Flores-Giubi, M. E. and Barúa-Chamorro, J. E. (2019). Antibiosis of proteins and metabolites of three species of Trichoderma against paraguayan isolates of Macrophomina phaseolina. Agronomía Mesoamericana, 30(1): 63-77.

Díaz-Nájera, J. F., Ayvar-Serna, S., Vargas-Hernández, M., Damián-Flores, M., Alvarado-Gómez, O. G, Mena-Bahena, A. and Acosta-Ramos, M. (2017). Identification and in vitro control of the causal agent of wilt in onion. Pakistan Journal of Agricultural Science, 54(3): 497-502.

Dugan, F. M., Lupien, S. L., & Hellier, B. C. (2019). Infection by Fusarium proliferatum in aerial garlic bulbils is strongly reduced compared to rates in seed cloves when both originate from infected bulbs. Crop Protection, 116, 43-48.

du-Toit, L. D., Inglis, D. A. and Pelter, G. Q. (2003). Fusarium proliferatum pathogenic on onion bulbs in Washington. Plant Disease, 87(6): 750-750.

Fishel, F. M. and Dewdney, M. M. (2012). Fungicide Resistance Action Committees (FRAC) Classification scheme of fungicides according to mode of action. PI94. University of Florida. 7 p. https://edis.ifas.ufl.edu/pdffiles/PI/PI13100.pdf

Ghanbarzadeh, B., Safaie, N., Goltapeh, E. M., Danesh, Y. R. and Khelghatibana, F. (2016). Biological control of Fusarium basal rot of onion using Trichoderma harzianum and Glomus mosseae. Journal of Crop Protection, 5(3): 359-368.

Hanaa, R. F., Abdou, Z. A., Salama, D. A., Ibrahim, M. A. and Sror, H. A. M. (2011). Effect of neem and willow aqueous extracts on Fusarium wilt disease in tomato seedlings: Induction of antioxidant defensive enzymes. Annals of Agricultural Sciences, 56(1): 17.

Haapalainen, M., Latvala, S., Kuivainen, E., Qiu, Y., Segerstedt, M. and Hannukkala, A. O. (2016). Fusarium oxysporum, F. proliferatum and F. redolens associated with basal rot of onion in Finland. Plant Pathology, 65(8): 1310–1320.

Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant disease, 87(1): 4-10. doi: 10.1094/PDIS.2003.87.1.4

John, R. P., Tyagi, R., Prévost, D., Brar, S. K., Pouleur, S. and Surampalli, R. (2010). Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protection, 29(12): 1452-1459.

Kumar, P. and Mane, S. S. 2017. Studies on the compatibility of biocontrol agents with certain fungicides. International Journal of Current Microbiology and Applied Sciences, 6(3): 1639-1644.

Leslie, J. F. and Sumerell, B. A. (2006). The Fusarium laboratory manual. Blackwell Publishing. Iowa, USA. pp: 80-110. 388 p.

Murray, M. G. and Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic acids research, 8(19): 4321-4326.

Naguleswaran, V. and Pakeerathan, K. (2014). Biological control: A promising tool for bulb-rot and leaf twisting fungal diseases in red onion (Allium cepa L.). Jaffna District. World Applied Sciences Journal, 31(6):1090-1095.

Omar, I., O'Neill, T. M. and Rossall, S. (2006). Biological control of Fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathology, 55(1): 92-99.

Patil, N. N., Waghmode, M. S., Gaikwad, P. S., Gajbhiye, M. H., Gunjal, A. B., Nawani, N. and Kapadnis, B. P. (2014). Potential of Microbispora sp. V2 as biocontrol agent against Sclerotium rolfsii, the causative agent of southern blight of Zea mays L. (Baby corn) in vitro studies. Indian Journal of Experimental Biology, 52(1): 1147-1151.

Quiroz-Sarmiento, V. F., Ferrera-Cerrato, R., Alarcón, A. and Lara-Hernández, M. E. (2008). Antagonismo in vitro de cepas de Aspergillus y Trichoderma hacia hongos filamentosos que afectan al cultivo del ajo. Revista Mexicana de Micología, 26, 27-34.

Sanabria-Velázquez, A. D. (2020). Evaluación de aislados de Trichoderma spp. nativos del Paraguay para el control de Colletotrichum spp. causante de la antracnosis en frutilla. Investigación Agraria, 22(1): 53-62.

Sintayehu, A., Sakhuja, P. K., Fininsa, C. and Ahmed, S. (2011). Management of Fusarium basal rot (Fusarium oxysporum f. sp. cepae) on shallot through fungicidal bulb treatment. Crop Protection, 30(5), 560–565.

Soliman, H. M., Abdel-Fattah, G. and Metwally, E. (2016). Antagonistic interactions between the foliar pathogen Botrytis fabae Sard. and Trichoderma harzianum Rifai. Asian Journal of Plant Pathology, 10(3): 21-28.

Suárez, M. C. L., Fernández, B. R. J. and Osvaldo, V. N. (2008). Antagonismo in vitro de Trichoderma harzianum Rifai sobre Fusarium solani (Mart.) Sacc., asociado a la marchitez en maracuyá. Revista Colombiana de Biotecnología 2: 35-43.

Swift, C. E., Wickliffe, E. R. and Schwartz, H. F. (2002). Vegetative compatibility groups of Fusarium oxysporum f. sp. cepae from onion in Colorado. Plant Disease, 86(6): 606-610.

Tirado-Ramírez, M. A., López-Orona, C. A., Díaz-Valdés, T., Velarde-Félix, S., Martínez-Campos, A. R., Romero-Gómez, S. J. and Retes-Manjarrez, J. E. (2019). First Report of Basal Rot of Onion Caused by Fusarium brachygibbosum in Sinaloa, Mexico. Plant Disease, 103(3): 582-582.

Villa-Martínez, A., Pérez-Leal, R., Morales-Morales, H. A., Basurto-Sotelo, M., Soto-Parra, J. M., Martínez-Escudero, E. (2015). Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica, 64(2):194 – 205.

Yasmeen, R. and Siddiqui, Z. (2017). Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Botanica Croatica, 76(2): 154–162.

Descargas

Publicado

02.06.2023

Cómo citar

Díaz-Nájera, J. F., Ayvar-Serna, S., Vargas-Hernández, M., Sanabria-Velázquez , A. D., Cerezo-Aparicio, C. M., & Enciso-Maldonado, G. A. (2023). Effectiveness of biological, botanical and synthetic products in the control of onion (Allium cepa) wilt caused by Fusarium sp. Resources for integrated management. Steviana , 14(1), 44–54. https://doi.org/10.56152/StevianaFacenV14N1A4_2022

Número

Sección

Artículos Originales de Biotecnología

Artículos similares

1 2 3 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.