Identification of wild tomato lines tolerant to salinity at germination and seedling stage.

Authors

DOI:

https://doi.org/10.57201/IEUNA2312777

Keywords:

Solanum lycopersicum, Solanum spp., estrés salino, recursos fitogenéticos.

Abstract

The genetic resources of the native and wild tomato (Solanum spp.)  have proven to be valuable reservoirs to search for genes tolerant to biotic and abiotic stress. Given the increase in agricultural areas with poor quality water and salt problems, it is necessary to identify tolerance genes to be transferred to commercial varieties. The objective of this research was to identify lines of native and wild populations with tolerance to salinity. For this, 96 lines in the germination and seedling stage were evaluated with two concentrations of salts NaCl (0 and 150 mM). In germination, the germination percentage and normal seedlings were evaluated, as well as the germination speed index. A group of 11 lines showed tolerance to salt stress. In the seedling stage, 41 lines selected in the previous test, sown in polypropylene trays, were evaluated.  The relative water content, fresh weight, root weight, dry weight, root dry weight, plant height and root length were quantified. At this stage, a group of 6 lines was identified that showed greater tolerance to salinity. The lines identified with tolerance to salinity can be used as resources in genetic improvement programs.

Downloads

Download data is not yet available.

References

Aini, N., Dwi Yamika, W. S. & Setiawan, A. (2017). The role of salt (NaCl) stress on seed germination, growth and proline content of some tomato varieties. Journal of Applied Horticulture, 19(3), 245-248. http://www.horticultureresearch.net/

Aini, N., Mapfumo, E., Rengel, Z. & Tang, C. (2012). Ecophysiological responses of Melaleuca species to dual stresses of water logging and salinity. Int. J. Plant Physiol. Biochem., 4(4): 52-58. doi: 10.5897/IJPPB11.032

Casierra-Posada, F., Arias-Aguirre, J. A. & Pachón, C. A.. (2013). Efecto de la salinidad por NaCl en híbridos de tomate (Lycopersicon esculentum Miller). Orinoquia, 17 (1), 23-29 http://ref.scielo.org/bn7y2y

Chakma, P., Hossain, M. M. & Rabbani, M. G. (2019). Effects of salinity stress on seed germination and seedling growth of tomato. Journal of the Bangladesh Agricultural University, 17(4), 490-499. https://doi.org/10.3329/jbau.v17i4.44617

Cortés, V. G., Alanoca, P. N. & Llave, M. C. (2014). Efecto de la salinidad sobre la germinación y crecimiento vegetativo de plantas de tomate silvestres y cultivada. Interciencia: Revista de ciencia y tecnología de América, 39(7), 511-517. https://www.redalyc.org/articulo.oa?id=33931446010

Devi, N. D. & Arumugam, T. (2019). Screening of tomato genotypes at various levels of salinity. Journal of Pharmacognosy and Phytochemistry, 8(3), 3199-3201. http://www.phytojournal.com/archives/2019/vol8issue3/PartAT/8-3-219-706.pdf

Estrada-Trejo, V., Lobato-Ortiz, R., García-de los Santos, G., Carrillo-Castañeda, G., Castillo-González, F., Contreras-Magaña, E., Ayala-Garay, O. J., De la O Olan, M. & Artola Mercadal, A. (2014). Diversidad de poblaciones nativas de jitomate para germinación en condiciones salinas. Revista mexicana de ciencias agrícolas, 5(6), 1067-1079. doi:10.29312/remexca.v5i6.890

Flores-Hernández, L. A., Lobato-Ortiz, R., García-Zavala, J. J., Molina-Galán, J. D., Sargerman-Jarquín, D. M. & Velasco-Alvarado, M. D. J. (2017). Parientes silvestres del tomate como fuente de germoplasma para el mejoramiento genético de la especie. Revista Fitotecnia Mexicana, 40(1), 83-91.https://doi.org/10.35196/rfm.2017.1.83-91

Foolad, M. R, Lin, G. Y. & Chen, F.Q. (1999). Comparison of QTLs for seed germination under nonstress, cold stress and salt stress in tomato. Plant Breed 118(2), 167–173. https://doi.org/10.1046/j.1439-0523.1999.118002167.

Goykovic Cortés, V. & Saavedra del Real, G. (2007). Algunos efectos de la salinidad en el cultivo del tomate y prácticas agronómicas de su manejo. Idesia (Arica), 25(3), 47-58. http://dx.doi.org/10.4067/S0718-34292007000300006

Hajiboland, R., Aliasgharzadeh, A., Laiegh, S. F. & Poschenrieder, C. (2010). Colonization with Arbuscular mycorrhizal fungi improve salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil., 331(1), 313-327. https://doi.org/10.1007/s11104-009-0255-z

Horie, T., Karahara, I. & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants.Rice Sci. 5(1),11-24. doi:10.1186/1939-8433-5-11

Hotelling, H. (1951). A generalized t test and measure of multivariate dispersion. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, California: University of California Press https://projecteuclid.org/download/pdf_1/euclid.bsmsp/1200500217

Kaveh, H., Nemati, H., Farsi, M. & Jartoodeh, S.V. (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 5(15), 159–163 http://jbes.uludag.edu.tr/.../mak07.pdf

Lamz Piedra, A. & González Cepero, M. C. (2013). La salinidad como problema en la agricultura: la mejora vegetal una solución inmediata. Cultivos Tropicales, 34(4), 31-42. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362013000400005&lng=es&tlng=es

Lara, F. S., Vallejo, P. R., García, P. S., Villa, M. S., Muñoz, M. L., Rodríguez, J. C. C. & Segovia, C. P. (2015). Tolerancia de líneas nativas de tomate (Solanum lycopersicum L.) a la salinidad con NaCl. Interciencia, 40(10), 704-709. https://www.redalyc.org/pdf/339/33941643009.pdf

Liedl, B. E., Labate, J. A., Stommel, J. R., Slade, A. & Kole, C. (2013). Genetics, Genomics, and Breeding of Tomato. Science Publishers Inc. USA. 520 p.

Magallanes-López, A. M., Damián, T. M., Castellanos, J. S., Flores, L. J. P., Montes, I. M. M. & Pérez, J. E. R. (2020). Calidad poscosecha de 40 poblaciones de tomate (Solanum lycopersicum l.) nativas de México. Agrociencia, 54(6), 779-795. https://doi.org/10.47163/agrociencia.v54i6.2184

Maguire, J. D. (1962). Speed of germination, aid in selection and evaluation of seedling emergence vigor. Crop Science, 2,176-177. https://dl.sciencesocieties.org/publications/cs/abstracts/2/2/CS0020020176

Marín-Montes, I. M., Rodríguez-Pérez, J. E., Sahagún-Castellanos, J., Hernández-Ibáñez, L. & Velasco-García, Á. M. (2016). Variación morfológica y molecular de 55 colectas de tomate nativo de México. Revista Chapingo. Serie horticultura, 22(2), 117-132. https://doi.org/10.5154/r.rchsh.2016.03.008.

Morales, D., Dell'Amico, J., Rodríguez, P., Torrecillas, A. & Sánchez-Blanco, M. D. J. (2010). Efecto del estrés por NaCl en el crecimiento y las relaciones hídricas en plantas de tomate (Solanum lycopersicum L.) durante el periodo vegetativo. Cultivos tropicales, 31(4), 76-81. https://www.redalyc.org/articulo.oa?id=193218885010

Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol. 167(3), 645– 63 https://doi.org/10.1111/j.1469-8137.2005.01487.x

Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Núñez-Colín, C. A. & Escobedo-López, D. (2011). Uso correcto del análisis clúster en la caracterización de germoplasma vegetal. Agronomía mesoamericana, 22(2), 415-427. doi:10.15517/am.v22i2.8746

Parihar, P., Singh, S., Singh, R., Singh, V. P. & Prasad, S. M. (2014). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056-4075. https://doi.org/10.1007/s11356-014-3739-1

Ruiz Espinoza, F. H., Villalpando Gutiérrez, R. L., Murillo Amador, B., Beltrán Morales, F. A. & Hernández Montiel, L. G. (2014). Respuesta diferencial a la salinidad de genotipos de tomate (Lycopersicon esculentum Mill.) en primeras etapas fenológicas. Terra latinoamericana, 32(4), 311-323. http://ref.scielo.org/yq4cm6

Singh, J., Sastry, D. & Singh, V. (2012). Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiology and molecular biology of plants: an international journal of functional plant biology. 18, 45-50. doi: 10.1007/s12298-011-0097-z

Statistical Analysis System (SAS Institute). (1983). SAS technical report A108. Cubic clustering criterion. Cary, N.C. USA, https://support.sas.com/documentation/onlinedoc/v82/techreport_a108.pdf

Tahir, M., Zafar, M. M., Imran, A., Hafeez, M. A., Rasheed, M. S., Mustafa, H. S. B., Ullah, A., Saad, H. M. & Mustafa, B. (2018). Response of tomato genotypes against salinity stress at germination and seedling stage. Nat. and Sci, 16(4), 10-17. doi:10.7537/marsnsj160418.03.

Van Zelm, E., Zhang, Y. & Testerink, C. (2020). Salt Tolerance Mechanisms of Plants. Annual Review of Plant Biology, 71(1). doi:10.1146/annurev-arplant-050718-100005

Yurtseven, E., Kesmez G. D. & Ünlükara, A. (2005). The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central Anatolian tomato species (Lycopersicon esculentum). Agric Water Manage, 78(1-2): 128–135 https://doi.org/10.1016/j.agwat.2005.04.018

Zhu, J. K. (2001) Plant salt tolerance. Trends Plant Sci, 6(2),66–7. https://doi.org/10.1016/S1360-1385(00)01838-0

Published

2023-06-30

How to Cite

Vazquez Hernández, J. C., Mascorro Gallardo, J. O., Rodriguez Pérez, J. E., Sahagún Castellanos, J., & Rodriguez de la O., J. L. (2023). Identification of wild tomato lines tolerant to salinity at germination and seedling stage. Journal Investigaciones Y Estudios - UNA , 14(1), 18–33. https://doi.org/10.57201/IEUNA2312777

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.