Valor nutricional de hojas y tallos de brócoli, apio y betarraga disponibles en un mercado mayorista de Santiago de Chile

Autores/as

DOI:

https://doi.org/10.18004/mem.iics/1812-9528/2022.020.03.97

Palabras clave:

Composición nutricional, apio, betarraga, brócoli

Resumen

La ingesta diaria de hortalizas se relaciona con menor riesgo de cáncer, diabetes, enfermedades coronarias y obesidad, pero partes de estos alimentos como cáscaras, tallos y hojas no son reutilizadas, aumentando los desperdicios e impactando negativamente al medio ambiente. El objetivo de este trabajo fue establecer el valor nutricional de hojas y tallos de apio, betarraga y brócoli del Mercado Mayorista Lo Valledor en Santiago de Chile. Un total de 6 muestras se recolectaron desde puntos de ventas del Mercado Mayorista, 3 de hojas de hortalizas (apio, betarraga y brócoli) y 3 de tallos (apio, betarraga y brócoli). La recolección, preparación y entrega de las mismas se realizaron de acuerdo a protocolos indicados por el laboratorio encargado de realizar los análisis nutricionales. Las hojas de betarraga presentaron mayor contenido de proteínas (2,6 g), fibra dietética total (4,5 g) y fibra dietética insoluble (3,3 g) que los tallos, pero estos aportan más carbohidratos (7 g). Las hojas de apio tienen más calorías (20,4 kcal), proteínas (2,4 g), fibra dietética total (7,4 g), fibra dietética soluble (1,3 g) y fibra dietética insoluble (5,3 g) aunque los tallos presentan un contenido superior de carbohidratos (4,1 g). Finalmente, las hojas de brócoli destacan por su contenido de carbohidratos (9,0 g), proteínas (2,5 g), fibra dietética total (10,4 g) y fibra dietética insoluble (7,9 g). De acuerdo al valor nutricional obtenido, estos excedentes son una opción de alimento en la dieta diaria de las personas y su valorización debe ser contemplada.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aune D, Giovannucci E, Boffetta P, Fadnes L, Keum N, Norat T, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017; 46(3): 1029-56. https://doi.org/10.1093/ije/dyw319

Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2014; 349, g4490. https://doi.org/10.1136/bmj.g4490

Li M, Fan Y, Zhang X, Hou W, Tang Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open. 2014; 4(11):e005497. https://doi.org/10.1136/bmjopen-2014-005497

Anderson JW, Baird P, Davis RH. Jr, Ferreri S, Knudtson M, Koraym A, et al. Health benefits of dietary fiber. Nut Rev. 2019; 67(4):188-205.

Bøhn S, Myhrstad M, Thoresen M, Holden M, Karlsen A, Tunheim S, et al. Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers. BMC Medicine. 2010; 8: 54-68. https://doi.org/10.1186/1741-7015-8-54 .

Tabassum N, Ahmad F. Role of Natural Herbs in the Treatment of Hypertension. Pharmacog Rev. 2011; 5(9): 30-40. https://doi.org/10.4103/0973-7847.79097

Li MY, Hou XL, Wang F, Tan GF, Xu ZS, Xiong AS. Advances in the research of celery, an important Apiaceae vegetable crop. Crit Rev Biotechnol. 2018; 38(2):172-83. doi: 10.1080/07388551.2017.1312275

Moghadam MH, Imenshahidi M, Mohajeri SA. Antihypertensive Effect of Celery Seed on Rat Blood Pressure in Chronic Administration. J Med Food. 2013; 16(6): 558-63. https://doi.org/10.1089/jmf.2012.26642013

Kooti W, Daraei N. A Review of the Antioxidant Activity of Celery (Apium graveolens L). J Evid Based Complementary Altern Med. 2017; 22(4): 1029-34. ? https://doi.org/10.1177/2156587217717415

Houston MC. Nutraceuticals, vitamins, antioxidants, and minerals in the prevention and treatment of hypertension. Prog Cardiovasc Dis. 2005:47(6): 396-449.

Nooprom K, Santipracha Q. Growth and yield of broccoli planted year round in Songkhla province, Thailand. Res J Appl Scl Eng Tech. 2014; 7(19): 4157-61. https://doi.org/10.19026/rjaset.7.781

Ilahy R, Tlili I, Pe´k Z, Montefusco A, Wasim M, Homa F, et al. Pre- and Post-harvest Factors Affecting Glucosinolate Content in Broccoli. Front. Nutr. 2020; 7: 147. https://doi.org/10.3389/fnut.2020.00147

Van Eylen D. Bellostas N, Strobeli BW, Oey I, Kendrickx M, Van Loey A, et al. Influence of pressure/temperature treatments on glucosinolate conversionin broccoli (Brassica oleraceaeL.cv Italica) heads. Food Chem. 2009; 112(3): 646-53. https://doi.org/10.1016/j.foodchem.2008.06.025

Zhang Y, Callaway E. High cellular accumulation of sulphoraphane, a dietary anticarcinogen, is followed by rapid transporter-mediated export as a glutathione conjugate. Biochem J. 2002; 364(Pt 1):301-7. https://doi.org/10.1042/bj3640301

Schepici G, Bramanti P, Mazzon E. Efficacy of Sulforaphane in Neurodegenerative Diseases. Int J Mol Sci. 2020; 21(22):8637-62. https://doi.org/10.3390/ijms21228637

Baião DDS, Da Silva DVT, Paschoalin VMF. Beetroot, a Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can be Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants (Basel). 2020; 9(10): 960-91. https://doi.org/10.3390/antiox9100960

Gómez MM, Duque-Cifuentes AL. Chemical Physical Characterization and Phenolic Content of Beet (Beta vulgaris L.) in Fresh and Subjected to Thermal Treatment. Rev Ion. 2018; 31(1):43-7. https://doi.org/10.18273/revion.v31n1-2018007

Amaro J. Influencia de la betarraga (Beta vulgaris var. cruenta) en el aumento de leucocitos, en ratones. An Fac Med. 2014; 75(1): 9-12. http://www.scielo.org.pe/pdf/afm/v75n1/a02v75n1.pdf

Tan ML, Hamid SBS. Beetroot as a Potential Functional Food for Cancer Chemoprevention, a Narrative Review. J Cancer Prev. 2021; 26(1): 1-17. https://doi.org/10.15430/JCP.2021.26.1.1

Siervo M, Shannon O, Kandhari N, Prabhakar M, Fostier W, Köchl C, et al. Nitrate-Rich Beetroot Juice Reduces Blood Pressure in Tanzanian Adults with Elevated Blood Pressure: A Double-Blind Randomized Controlled Feasibility Trial. J Nutr. 2020; 150(9): 2460-8. https://doi.org/10.1093/jn/nxaa170

Jones T, Dunn EL, Macdonald JH, Kubis HP, McMahon N, Sando, A. The effects of beetroot juice on blood pressure, microvascular function and large-vessel endothelial function: a randomized, double-blind, placebo-controlled pilot study in healthy older adults. Nutrients. 2019; 11(8): 1792-808. https://doi.org/10.3390/nu11081792

Food and Agriculture Organization of the United Nations. Global food losses and food waste-extent, causes and prevention, 2011 [Internet]. Roma. [citado el 10 de mayo de 2022]. Disponible en:? Disponible en:? https://www.fao.org/3/mb060e/mb060e00.htm

Food and Agriculture Organization of the United Nations. Iniciativa mundial sobre la reducción de la pérdida y el desperdicio de alimentos, 2015 [Internet]. Roma. [citado el 10 de mayo de 2022]. https://www.fao.org/3/i4068s/i4068s.pdf

HLPE (Grupo de alto nivel de expertos). Las pérdidas y el desperdicio de alimentos en el contexto de sistemas alimentarios sostenibles, 2014 [Internet]. Roma. [citado el 10 de mayo de 2022]. https://www.fao.org/3/i3901s/i3901s.pdf

González CG. Frutas y verduras perdidas y desperdiciadas, una oportunidad para mejorar el consumo. Rev Chil Nutr. 2018; 45(3): 198-8. http://dx.doi.org/10.4067/s0717-75182018000400198

Brouwer-Brolsma E, Brandl B, Buso M, Skurk T, Manach C. Food intake biomarkers for green leafy vegetables, bulb vegetables, and stem vegetables: a review. Genes & Nutrition. 2020; 15: 7. https://doi.org/10.1186/s12263-020-00667-z

FEN (Fundación Española de la Nutrición). Informe de estado de situación sobre "Frutas y hortalizas: Nutrición y salud en la España del S.XXI", 2018 [Internet]. España. [citado el 12 de octubre de 2022]. Disponible en: https://www.fesnad.org/resources/files/Noticias/frutasYHortalizas.pdf

Lataste C, Sandoval S, Maturana D, Delgado C, Gajardo S, Cáceres P. Indicadores de transformación de alimentos consumidos en Chile para su uso en planificación de minutas. Archivos Latinoamericanos de Nutrición. 2020; 7(1): 8-1. https://doi.org/10.37527/2020.70.1.002

FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) y ODEPA (Oficina de Estudios y Políticas Agrarias). Guía de buenas prácticas para la prevención de la pérdida de alimentos. Chile, 2019 [Internet]. Chile. [citado el 12 de octubre de 2022]. https://www.odepa.gob.cl/wp-content/uploads/2019/11/Guia-para-prevenir-y-reducir-la-perdidad-de-frutas-y-hortalizas.pdf

Mezeyová I, Hegedusová A, Mezey J. Evaluation of quantitative and qualitative characteristics of selected celery (Apium graveolens var.dulce) varieties in the context of juices production. Potr S J F Sci. 2018; 12(1): 173-179. doi: https://dx.doi.org/10.5219/883

Zelenkov VN, Ivanova MI, Latushkin VV. Elemental composition of Apium graveolens L. seeds as an indicator of the nutritional value of competitive organic products. Earth Environ Sci. 2021; 650: 012055. https://doi.org/10.1088/1755-1315/650/1/012055

Sufiyan S, Mansoor M, Singla RK, Khan S. Isolation of 3-n-Butyl Phthalide & Sedanenolide from Apium graveolens Linn. Indo Glob J Pharm Sci. 2012; 2(3):258-261. http://iglobaljournal.com/wp-content/uploads/2012/11/6.-Fazal-SS-et-al-2012.pdf

Salehi B, Venditti A, Frezza C, Yücetepe A, Altuntas Ü, Uluata S, et al. Apium Plants: Beyond Simple Food and Phytopharmacological Applications. Appl Sci. 2019; 9(17): 3547-85. https://doi.org/10.3390/app9173547

Popovic M, Kaurinovic B, Trivic S, Mimica-Dukic N, Bursac M. Effect of Celery (Apium graveolens) Extracts on Some Biochemical Parameters of Oxidative Stress in Mice Treated with Carbon Tetrachloride. Phytother Res. 2006; 20(7): 531-37. https://onlinelibrary.wiley.com/doi/10.1002/ptr.1871

Dianat M, Veisi A, Ahangarpour A. The effect of hydro-alcoholic celery (Apiumgraveolens) leaf extract on cardiovascular parameters and lipid profile in animal model of hypertension induced by fructose. Avicenna J Phytomed. 2015; 5(3): 203-209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469955/

Campas-Baypoli ON, Bueno-Solano C, Martínez-Ibarra DM, Camacho-Gil F, Villa-Lerna AG, Rodríguez-Núñez JR, et al. Contenido de sulforafano (1-isotiocianato-4-(metilsulfinil)-butano) en vegetales crucíferos. ALAN. 2009; 59(1): 95-100. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222009000100015

Nandini DB, Rao RS, Deepak BS, Reddy PS. Sulforaphane in broccoli: The green chemoprevention!! Role in cancer prevention and therapy. J Oral Maxillofac Pathol. 2020; 24(2): 405-412. https://doi.org/10.4103/jomfp.JOMFP_126_19

Abella´n A, Domi´nguez-Perles R, Moreno D, García-Viguera C. Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients. 2019; 11(2):429-451. https://doi.org/10.3390/nu11020429

Dosz EB, Jeffery EH. Commercially produced frozen broccoli lacks the ability to form sulforaphane. J Funct Foods. 2013; 5(2):987-990. https://doi.org/10.1016/j.jff.2013.01.033

Janiszewska E, Wlodarczyk J. Influence of spray drying conditions on beetroot pigments retention after microencapsulation process. Acta Agroph. 2013; 20(2): 343-356. Disponible en: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-73987ffd-8e37-449d-b53b-83dd98a773c3/c/Janiszewska-343-356.pdf

Lidder S, Webb AJ. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway. Br J Clin Pharmacol. 2019; 75(3):677-696. https://doi.org/10.1111/j.1365-2125.2012.04420.x

Casierra-Posada F, Pinto-Correa JR. Crecimiento de Plantas de Remolacha (Beta vulgaris L. var. Crosby Egipcia) Bajo Coberturas de Color. Rev Fac Nal Agr Medellín. 2011; 64(2):6081-6091. https://revistas.unal.edu.co/index.php/refame/article/view/29368

Mirmiran P, Houshialsadat Z, Gaeini Z, Bahadoran Z, Azizi F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutrition & Metabolism. 2020; 17: 3. https://doi.org/10.1186/s12986-019-0421-0 .

Zurbau A, Au-Yeung F, Blanco S, Khan T, Vuksan V, Jovanovski E, et al. Relation of Different Fruit and Vegetable Sources With Incident Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Journal of the American Heart Association. 2020; 9(19): e017728. https://doi.org/10.1161/JAHA.120.017728

Hall J, Moore S, Harper S, Lynch J. Global Variability in Fruit and Vegetable Consumption. American Journal of Preventive Medicine. 2009; 36(5): 402-409. https://doi.org/10.1016/j.amepre.2009.01.029

Sánchez M, Barrantes J. Hojas, flores y tallos comestibles no tradicionales en Costa Rica. Revista de Ciencias Sociales. 2008; 1(119): 137-152. Disponible en: http://www.redalyc.org/articulo.oa?id=15312718009

Gutiérrez I, López S, Magadán P, Fernández L, Pérez Á, Tuñón M, et al. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants. 2021; 10(8): 1264-1296. https://doi.org/10.3390/antiox10081264

Campos D, Gómez R, Vilas A, Madureira A, Pintado M. Management of Fruit Industrial By-Products-A Case Study on Circular Economy Approach. 2020; 25(2): 320-341. https://doi.org/10.3390/molecules25020320 .

Halog A, Anieke S. A Review of Circular Economy Studies in Developed Countries and Its Potential Adoption in Developing Countries. Circular Economy and Sustainability. 2021; 1(1): 209-230. https://doi.org/10.1007/s43615-021-00017-0

Descargas

Publicado

2022-12-01

Cómo citar

Rodríguez-Palleres, X., & Rojas-González, F. (2022). Valor nutricional de hojas y tallos de brócoli, apio y betarraga disponibles en un mercado mayorista de Santiago de Chile. Memorias Del Instituto De Investigaciones En Ciencias De La Salud, 20(3), 97–107. https://doi.org/10.18004/mem.iics/1812-9528/2022.020.03.97

Número

Sección

Articulos Originales

Artículos similares

1 2 3 > >> 

También puede {advancedSearchLink} para este artículo.