Valor nutricional de hojas y tallos de brócoli, apio y betarraga disponibles en un mercado mayorista de Santiago de Chile
DOI:
https://doi.org/10.18004/mem.iics/1812-9528/2022.020.03.97Palabras clave:
Composición nutricional, apio, betarraga, brócoliResumen
La ingesta diaria de hortalizas se relaciona con menor riesgo de cáncer, diabetes, enfermedades coronarias y obesidad, pero partes de estos alimentos como cáscaras, tallos y hojas no son reutilizadas, aumentando los desperdicios e impactando negativamente al medio ambiente. El objetivo de este trabajo fue establecer el valor nutricional de hojas y tallos de apio, betarraga y brócoli del Mercado Mayorista Lo Valledor en Santiago de Chile. Un total de 6 muestras se recolectaron desde puntos de ventas del Mercado Mayorista, 3 de hojas de hortalizas (apio, betarraga y brócoli) y 3 de tallos (apio, betarraga y brócoli). La recolección, preparación y entrega de las mismas se realizaron de acuerdo a protocolos indicados por el laboratorio encargado de realizar los análisis nutricionales. Las hojas de betarraga presentaron mayor contenido de proteínas (2,6 g), fibra dietética total (4,5 g) y fibra dietética insoluble (3,3 g) que los tallos, pero estos aportan más carbohidratos (7 g). Las hojas de apio tienen más calorías (20,4 kcal), proteínas (2,4 g), fibra dietética total (7,4 g), fibra dietética soluble (1,3 g) y fibra dietética insoluble (5,3 g) aunque los tallos presentan un contenido superior de carbohidratos (4,1 g). Finalmente, las hojas de brócoli destacan por su contenido de carbohidratos (9,0 g), proteínas (2,5 g), fibra dietética total (10,4 g) y fibra dietética insoluble (7,9 g). De acuerdo al valor nutricional obtenido, estos excedentes son una opción de alimento en la dieta diaria de las personas y su valorización debe ser contemplada.
Descargas
Citas
Aune D, Giovannucci E, Boffetta P, Fadnes L, Keum N, Norat T, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017; 46(3): 1029-56. https://doi.org/10.1093/ije/dyw319
Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2014; 349, g4490. https://doi.org/10.1136/bmj.g4490
Li M, Fan Y, Zhang X, Hou W, Tang Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open. 2014; 4(11):e005497. https://doi.org/10.1136/bmjopen-2014-005497
Anderson JW, Baird P, Davis RH. Jr, Ferreri S, Knudtson M, Koraym A, et al. Health benefits of dietary fiber. Nut Rev. 2019; 67(4):188-205.
Bøhn S, Myhrstad M, Thoresen M, Holden M, Karlsen A, Tunheim S, et al. Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers. BMC Medicine. 2010; 8: 54-68. https://doi.org/10.1186/1741-7015-8-54 .
Tabassum N, Ahmad F. Role of Natural Herbs in the Treatment of Hypertension. Pharmacog Rev. 2011; 5(9): 30-40. https://doi.org/10.4103/0973-7847.79097
Li MY, Hou XL, Wang F, Tan GF, Xu ZS, Xiong AS. Advances in the research of celery, an important Apiaceae vegetable crop. Crit Rev Biotechnol. 2018; 38(2):172-83. doi: 10.1080/07388551.2017.1312275
Moghadam MH, Imenshahidi M, Mohajeri SA. Antihypertensive Effect of Celery Seed on Rat Blood Pressure in Chronic Administration. J Med Food. 2013; 16(6): 558-63. https://doi.org/10.1089/jmf.2012.26642013
Kooti W, Daraei N. A Review of the Antioxidant Activity of Celery (Apium graveolens L). J Evid Based Complementary Altern Med. 2017; 22(4): 1029-34. ? https://doi.org/10.1177/2156587217717415
Houston MC. Nutraceuticals, vitamins, antioxidants, and minerals in the prevention and treatment of hypertension. Prog Cardiovasc Dis. 2005:47(6): 396-449.
Nooprom K, Santipracha Q. Growth and yield of broccoli planted year round in Songkhla province, Thailand. Res J Appl Scl Eng Tech. 2014; 7(19): 4157-61. https://doi.org/10.19026/rjaset.7.781
Ilahy R, Tlili I, Pe´k Z, Montefusco A, Wasim M, Homa F, et al. Pre- and Post-harvest Factors Affecting Glucosinolate Content in Broccoli. Front. Nutr. 2020; 7: 147. https://doi.org/10.3389/fnut.2020.00147
Van Eylen D. Bellostas N, Strobeli BW, Oey I, Kendrickx M, Van Loey A, et al. Influence of pressure/temperature treatments on glucosinolate conversionin broccoli (Brassica oleraceaeL.cv Italica) heads. Food Chem. 2009; 112(3): 646-53. https://doi.org/10.1016/j.foodchem.2008.06.025
Zhang Y, Callaway E. High cellular accumulation of sulphoraphane, a dietary anticarcinogen, is followed by rapid transporter-mediated export as a glutathione conjugate. Biochem J. 2002; 364(Pt 1):301-7. https://doi.org/10.1042/bj3640301
Schepici G, Bramanti P, Mazzon E. Efficacy of Sulforaphane in Neurodegenerative Diseases. Int J Mol Sci. 2020; 21(22):8637-62. https://doi.org/10.3390/ijms21228637
Baião DDS, Da Silva DVT, Paschoalin VMF. Beetroot, a Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can be Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants (Basel). 2020; 9(10): 960-91. https://doi.org/10.3390/antiox9100960
Gómez MM, Duque-Cifuentes AL. Chemical Physical Characterization and Phenolic Content of Beet (Beta vulgaris L.) in Fresh and Subjected to Thermal Treatment. Rev Ion. 2018; 31(1):43-7. https://doi.org/10.18273/revion.v31n1-2018007
Amaro J. Influencia de la betarraga (Beta vulgaris var. cruenta) en el aumento de leucocitos, en ratones. An Fac Med. 2014; 75(1): 9-12. http://www.scielo.org.pe/pdf/afm/v75n1/a02v75n1.pdf
Tan ML, Hamid SBS. Beetroot as a Potential Functional Food for Cancer Chemoprevention, a Narrative Review. J Cancer Prev. 2021; 26(1): 1-17. https://doi.org/10.15430/JCP.2021.26.1.1
Siervo M, Shannon O, Kandhari N, Prabhakar M, Fostier W, Köchl C, et al. Nitrate-Rich Beetroot Juice Reduces Blood Pressure in Tanzanian Adults with Elevated Blood Pressure: A Double-Blind Randomized Controlled Feasibility Trial. J Nutr. 2020; 150(9): 2460-8. https://doi.org/10.1093/jn/nxaa170
Jones T, Dunn EL, Macdonald JH, Kubis HP, McMahon N, Sando, A. The effects of beetroot juice on blood pressure, microvascular function and large-vessel endothelial function: a randomized, double-blind, placebo-controlled pilot study in healthy older adults. Nutrients. 2019; 11(8): 1792-808. https://doi.org/10.3390/nu11081792
Food and Agriculture Organization of the United Nations. Global food losses and food waste-extent, causes and prevention, 2011 [Internet]. Roma. [citado el 10 de mayo de 2022]. Disponible en:? Disponible en:? https://www.fao.org/3/mb060e/mb060e00.htm
Food and Agriculture Organization of the United Nations. Iniciativa mundial sobre la reducción de la pérdida y el desperdicio de alimentos, 2015 [Internet]. Roma. [citado el 10 de mayo de 2022]. https://www.fao.org/3/i4068s/i4068s.pdf
HLPE (Grupo de alto nivel de expertos). Las pérdidas y el desperdicio de alimentos en el contexto de sistemas alimentarios sostenibles, 2014 [Internet]. Roma. [citado el 10 de mayo de 2022]. https://www.fao.org/3/i3901s/i3901s.pdf
González CG. Frutas y verduras perdidas y desperdiciadas, una oportunidad para mejorar el consumo. Rev Chil Nutr. 2018; 45(3): 198-8. http://dx.doi.org/10.4067/s0717-75182018000400198
Brouwer-Brolsma E, Brandl B, Buso M, Skurk T, Manach C. Food intake biomarkers for green leafy vegetables, bulb vegetables, and stem vegetables: a review. Genes & Nutrition. 2020; 15: 7. https://doi.org/10.1186/s12263-020-00667-z
FEN (Fundación Española de la Nutrición). Informe de estado de situación sobre "Frutas y hortalizas: Nutrición y salud en la España del S.XXI", 2018 [Internet]. España. [citado el 12 de octubre de 2022]. Disponible en: https://www.fesnad.org/resources/files/Noticias/frutasYHortalizas.pdf
Lataste C, Sandoval S, Maturana D, Delgado C, Gajardo S, Cáceres P. Indicadores de transformación de alimentos consumidos en Chile para su uso en planificación de minutas. Archivos Latinoamericanos de Nutrición. 2020; 7(1): 8-1. https://doi.org/10.37527/2020.70.1.002
FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) y ODEPA (Oficina de Estudios y Políticas Agrarias). Guía de buenas prácticas para la prevención de la pérdida de alimentos. Chile, 2019 [Internet]. Chile. [citado el 12 de octubre de 2022]. https://www.odepa.gob.cl/wp-content/uploads/2019/11/Guia-para-prevenir-y-reducir-la-perdidad-de-frutas-y-hortalizas.pdf
Mezeyová I, Hegedusová A, Mezey J. Evaluation of quantitative and qualitative characteristics of selected celery (Apium graveolens var.dulce) varieties in the context of juices production. Potr S J F Sci. 2018; 12(1): 173-179. doi: https://dx.doi.org/10.5219/883
Zelenkov VN, Ivanova MI, Latushkin VV. Elemental composition of Apium graveolens L. seeds as an indicator of the nutritional value of competitive organic products. Earth Environ Sci. 2021; 650: 012055. https://doi.org/10.1088/1755-1315/650/1/012055
Sufiyan S, Mansoor M, Singla RK, Khan S. Isolation of 3-n-Butyl Phthalide & Sedanenolide from Apium graveolens Linn. Indo Glob J Pharm Sci. 2012; 2(3):258-261. http://iglobaljournal.com/wp-content/uploads/2012/11/6.-Fazal-SS-et-al-2012.pdf
Salehi B, Venditti A, Frezza C, Yücetepe A, Altuntas Ü, Uluata S, et al. Apium Plants: Beyond Simple Food and Phytopharmacological Applications. Appl Sci. 2019; 9(17): 3547-85. https://doi.org/10.3390/app9173547
Popovic M, Kaurinovic B, Trivic S, Mimica-Dukic N, Bursac M. Effect of Celery (Apium graveolens) Extracts on Some Biochemical Parameters of Oxidative Stress in Mice Treated with Carbon Tetrachloride. Phytother Res. 2006; 20(7): 531-37. https://onlinelibrary.wiley.com/doi/10.1002/ptr.1871
Dianat M, Veisi A, Ahangarpour A. The effect of hydro-alcoholic celery (Apiumgraveolens) leaf extract on cardiovascular parameters and lipid profile in animal model of hypertension induced by fructose. Avicenna J Phytomed. 2015; 5(3): 203-209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469955/
Campas-Baypoli ON, Bueno-Solano C, Martínez-Ibarra DM, Camacho-Gil F, Villa-Lerna AG, Rodríguez-Núñez JR, et al. Contenido de sulforafano (1-isotiocianato-4-(metilsulfinil)-butano) en vegetales crucíferos. ALAN. 2009; 59(1): 95-100. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222009000100015
Nandini DB, Rao RS, Deepak BS, Reddy PS. Sulforaphane in broccoli: The green chemoprevention!! Role in cancer prevention and therapy. J Oral Maxillofac Pathol. 2020; 24(2): 405-412. https://doi.org/10.4103/jomfp.JOMFP_126_19
Abella´n A, Domi´nguez-Perles R, Moreno D, García-Viguera C. Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients. 2019; 11(2):429-451. https://doi.org/10.3390/nu11020429
Dosz EB, Jeffery EH. Commercially produced frozen broccoli lacks the ability to form sulforaphane. J Funct Foods. 2013; 5(2):987-990. https://doi.org/10.1016/j.jff.2013.01.033
Janiszewska E, Wlodarczyk J. Influence of spray drying conditions on beetroot pigments retention after microencapsulation process. Acta Agroph. 2013; 20(2): 343-356. Disponible en: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-73987ffd-8e37-449d-b53b-83dd98a773c3/c/Janiszewska-343-356.pdf
Lidder S, Webb AJ. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway. Br J Clin Pharmacol. 2019; 75(3):677-696. https://doi.org/10.1111/j.1365-2125.2012.04420.x
Casierra-Posada F, Pinto-Correa JR. Crecimiento de Plantas de Remolacha (Beta vulgaris L. var. Crosby Egipcia) Bajo Coberturas de Color. Rev Fac Nal Agr Medellín. 2011; 64(2):6081-6091. https://revistas.unal.edu.co/index.php/refame/article/view/29368
Mirmiran P, Houshialsadat Z, Gaeini Z, Bahadoran Z, Azizi F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutrition & Metabolism. 2020; 17: 3. https://doi.org/10.1186/s12986-019-0421-0 .
Zurbau A, Au-Yeung F, Blanco S, Khan T, Vuksan V, Jovanovski E, et al. Relation of Different Fruit and Vegetable Sources With Incident Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Journal of the American Heart Association. 2020; 9(19): e017728. https://doi.org/10.1161/JAHA.120.017728
Hall J, Moore S, Harper S, Lynch J. Global Variability in Fruit and Vegetable Consumption. American Journal of Preventive Medicine. 2009; 36(5): 402-409. https://doi.org/10.1016/j.amepre.2009.01.029
Sánchez M, Barrantes J. Hojas, flores y tallos comestibles no tradicionales en Costa Rica. Revista de Ciencias Sociales. 2008; 1(119): 137-152. Disponible en: http://www.redalyc.org/articulo.oa?id=15312718009
Gutiérrez I, López S, Magadán P, Fernández L, Pérez Á, Tuñón M, et al. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants. 2021; 10(8): 1264-1296. https://doi.org/10.3390/antiox10081264
Campos D, Gómez R, Vilas A, Madureira A, Pintado M. Management of Fruit Industrial By-Products-A Case Study on Circular Economy Approach. 2020; 25(2): 320-341. https://doi.org/10.3390/molecules25020320 .
Halog A, Anieke S. A Review of Circular Economy Studies in Developed Countries and Its Potential Adoption in Developing Countries. Circular Economy and Sustainability. 2021; 1(1): 209-230. https://doi.org/10.1007/s43615-021-00017-0