Avaliação da seleção genômica em bovinos: percepções de simulações computacionais usando dados reais de SNP
DOI:
https://doi.org/10.57201/ieuna2424208Palavras-chave:
precisão preditiva, seleção de marcadores, cruzamentoResumo
A seleção genômica (GS) é um método que usa dados genômicos para estimar os valores de reprodução e classificar os candidatos à seleção. Apesar de suas muitas vantagens, sua aplicação em programas de criação de gado ainda é incipiente em muitos sistemas pecuários desenvolvidos em ambientes tropicais e subtropicais, como os do Paraguai. As simulações computacionais são ferramentas poderosas que melhoram nossa compreensão das aplicações da SG em diferentes cenários e são valiosas como uma etapa inicial antes da implementação dessa técnica em programas de melhoramento "reais". Neste estudo, dados reais sobre polimorfismos de nucleotídeo único (SNPs) das raças Indicus e Taurus foram usados para simular três esquemas de cruzamento: cruzamentos F1, cruzamentos absorventes e rotacionais. Os fenótipos foram selecionados para características relacionadas à força de cisalhamento, crescimento e tolerância. Comparamos a precisão preditiva de três chips SNP de 50k que diferiam nas metodologias de seleção: seleção aleatória, seleção baseada em diferenças mínimas de frequência alélica entre raças e seleção baseada em diferenças mínimas de frequência alélica entre raças com um limite de 0,09 em Taurus. Os resultados indicam que o cruzamento rotacional demonstra uma precisão preditiva ideal (0,38), enquanto a seleção de marcadores com base nas diferenças de frequência alélica entre as raças (0,18 e 0,17, respectivamente) não beneficia significativamente as previsões.
Downloads
Referências
Alencar, M. M., Fraga, A. B., é da Silva, A. M. (2005). Adaptação de genótipos a ambientes tropicais resistência à mosca-dos-chifres (Haematobia irritans, linnaeus) e ao carrapato (Boophilus microplus, CANESTRINI) em diferentes genótipos bovinos. Agrociencia, 9 (1-2), 579–585.
Berry, D. P., & Crowley, J. J. (2013). Cell biology symposium: Genetics of feed efficiency in dairy and beef cattle. Journal of Animal Science, 91(4), 1594–1613. https://doi.org/10.2527/jas.2012-5862
Boonkum, W., & Duangjinda, M. (2015). Estimation of genetic parameters for heat stress, including dominance gene effects, on milk yield in Thai Holstein dairy cattle. Animal Science Journal, 86(3), 245–250. https://doi.org/10.1111/asj.12276
Bovine Hapmap Consortium. (2009). Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds. Science, 324(5926), 528–532. https://doi.org/10.1126/science.1167936
Browning, B. L., & Browning, S. R. (2016). Genotype Imputation with Millions of Reference Samples. American Journal of Human Genetics, 98(1), 116–126. https://doi.org/10.1016/j.ajhg.2015.11.020
Budhlakoti, N., Kushwaha, A. K., Rai, A., Chaturvedi, K. K., Kumar, A., Pradhan, A. K., Kumar, U., Kumar, R. R., Juliana, P., Mishra, D. C., and Kumar, S. (2022). Genomic Selection: A Tool for Accelerating the Efficiency of Molecular Breeding for Development of Climate-Resilient Crops. Frontiers in Genetics, 13. https://doi.org/10.3389/fgene.2022.832153
Bunning, H., Wall, E., Chagunda, M. G. G., Banos, G., & Simm, G. (2019). Heterosis in cattle crossbreeding schemes in tropical regions: meta-analysis of effects of breed combination, trait type, and climate on level of heterosis. Journal of Animal Science, 97(1), 29–34. https://doi.org/10.1093/jas/sky406
Burrow, H. M. (2001). Variances and covariances between productive and adaptive traits and temperament in a composite breed of tropical beef cattle. Livestock Production Science, 70(3), 213–233. https://doi.org/10.1016/S0301-6226(01)00178-6
Burrow, H. M. (2012). Importance of adaptation and genotype × environment interactions in tropical beef breeding systems. Animal, 6(5), 729–740. https://doi.org/10.1017/S175173111200002X
Burrow, H. M., Moore, S. S., Johnston, D. J., Barendse, W., & Bindon, B. M. (2001). Quantitative and molecular genetic influences on properties of beef: A review. Australian Journal of Experimental Agriculture, 41(7), 893–919. https://doi.org/10.1071/EA00015
Caballero, A., Tenesa, A., & Keightley, P. D. (2015). The Nature of Genetic Variation for Complex Traits Revealed by GWAS and Regional Heritability Mapping Analyses. Genetics, 201(4), 1601–1613. https://doi.org/10.1534/genetics.115.177220
Cooke, R. F., Daigle, C. L., Moriel, P., Smith, S. B., Tedeschi, L. O., & Vendramini, J. M. B. (2020). Cattle adapted to tropical and subtropical environments: social, nutritional, and carcass quality considerations. Journal of Animal Science, 98(2). https://doi.org/10.1093/jas/skaa015
Cucco, D., Ferraz, J., Eler, J., Balieiro, J., Mattos, E., & Varona, L. (2010). Genetic parameters for postweaning traits in Braunvieh cattle. Genetics and Molecular Research, 9(1), 545–553. https://doi.org/10.4238/vol9-1gmr764
Cv, S. (2015). Cross-breeding in Cattle for Milk Production: Achievements, Challenges and Opportunities in India-A Review. Advances in Dairy Research, 4(3), 1–14. https://doi.org/10.4172/2329-888x.1000158
Dadi, H., Kim, J. J., Yoon, D., & Kim, K. S. (2012). Evaluation of Single Nucleotide Polymorphisms (SNPs) Genotyped by the Illumina Bovine SNP50K in Cattle Focusing on Hanwoo Breed. Asian-Australasian Journal of Animal Sciences, 25(1), 28–32. https://doi.org/10.5713/ajas.2011.11232
Dodds, K. G., Auvray, B., Newman, S. A. N., & McEwan, J. C. (2014). Genomic breed prediction in New Zealand sheep. BMC Genetics, 15, 92. https://doi.org/10.1186/s12863-014-0092-9
Eiríksson, J. H., Strandén, I., Su, G., Mäntysaari, E. A., & Christensen, O. F. (2022). Local breed proportions and local breed heterozygosity in genomic predictions for crossbred dairy cows. Journal of Dairy Science, 105(12), 9822–9836. https://doi.org/10.3168/jds.2022-22225
Elzo, M. A., Johnson, D. D., Wasdin, J. G., & Driver, J. D. (2012). Carcass and meat palatability breed differences and heterosis effects in an Angus-Brahman multibreed population. Meat Science, 90(1), 87–92. https://doi.org/10.1016/j.meatsci.2011.06.010
Esrafili Taze Kand Mohammaddiyeh, M., Rafat, S. A., Shodja, J., Javanmard, A., & Esfandyari, H. (2023). Selective genotyping to implement genomic selection in beef cattle breeding. Frontiers in Genetics, 14, 1083106. https://doi.org/10.3389/fgene.2023.1083106
Fernandes Júnior, G. A., Peripolli, E., Schmidt, P. I., Campos, G. S., Mota, L. F. M., Mercadante, M. E. Z., Baldi, F., Carvalheiro, R., & de
Albuquerque, L. G. (2022). Current applications and perspectives of genomic selection in Bos indicus (Nellore) cattle. Livestock Science, 263. https://doi.org/10.1016/j.livsci.2022.105001
Galukande, E., Mulindwa, H., Wurzinger, M., Roschinsky, R., Mwai, A. O., & Sölkner, J. (2013). Cross-breeding cattle for milk production in the tropics: achievements, challenges and opportunities. Animal Genetic Resources/Ressources Génétiques Animales/Recursos Genéticos Animales, 52, 111–125. https://doi.org/10.1017/s2078633612000471
Goddard, M. E. & Hayes, B. J. (2007). Genomic selection. Journal of Animal Breeding and Genetics, 124(6), 323–330. https://doi.org/10.1111/j.1439-0388.2007.00702.x
Hayes, B. J., Lewin, H. A., & Goddard, M. E. (2013). The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics, 29(4), 206–214. https://doi.org/10.1016/j.tig.2012.11.009
Henshall, J. M. (2004). A genetic analysis of parasite resistance traits in a tropically adapted line of Bos taurus. Australian Journal of Agricultural Research, 55(11), 1109–1116. https://doi.org/10.1071/AR03085
Hewetson, R. W. (1972). The inheritance of resistance by cattle to cattle tick. Australian Veterinary Journal, 48(5), 299–303. https://doi.org/10.1111/j.1751-0813.1972.tb05161.x
Hu, Z. L., Park, C. A., & Reecy, J. M. (2022). Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Research, 50(D1), D956–D961. https://doi.org/10.1093/nar/gkab1116
Kasarapu, P., Porto-Neto, L. R., Fortes, M. R. S., Lehnert, S. A., Mudadu, M. A., Coutinho, L., Regitano, L., George, A., & Reverter, A. (2017). The Bos taurus–Bos indicus balance in fertility and milk related genes. PLoS ONE, 12(8), e0181930. https://doi.org/10.1371/journal.pone.0181930
Kim, J.-J., Farnir, F., Savell, J., & Taylor, J. F. (2003). Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle. Journal of Animal Science, 81(8), 1933–1942. https://doi.org/10.2527/2003.8181933x
Kockum, I., Huang, J., & Stridh, P. (2023). Overview of Genotyping Technologies and Methods. Current Protocols, 3(4), e727. https://doi.org/10.1002/cpz1.727
Leroy, G., Baumung, R., Boettcher, P., Scherf, B., & Hoffmann, I. (2016). Review: Sustainability of crossbreeding in developing countries; definitely not like crossing a meadow…. Animal: An International Journal of Animal Bioscience, 10(2), 262–273. https://doi.org/10.1017/S175173111500213X
Machado, M. A., Azevedo, A. L., Teodoro, R. L., Pires, M. A., Peixoto, M. G., de Freitas, C., Prata, M. C., Furlong, J., da Silva, M. V., Guimarães, S. E., Regitano, L. C., Coutinho, L. L., Gasparin, G., & Verneque, R. S. (2010). Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus × Bos indicus). BMC Genomics, 11, 280. https://doi.org/10.1186/1471-2164-11-280
Maciel, I. C. F., Barbosa, F. A., Tomich, T. R., Ribeiro, L., Alvarenga, R. C., Lopes, L. S., Malacco, V. M. R., Rowntree, J. E., Thompson, L. R., & Lana, Â. M. Q. (2019). Could the breed composition improve performance and change the enteric methane emissions from beef cattle in a tropical intensive production system? PLoS ONE, 14(7), e0220247. https://doi.org/10.1371/journal.pone.0220247
Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819–1829. https://doi.org/10.1093/genetics/157.4.1819
Moghaddar, N., Swan, A. A., & Van Der Werf, J. H. J. (2014). Comparing genomic prediction accuracy from purebred, crossbred and combined purebred and crossbred reference populations in sheep. Genet Sel Evol, 46, 58. https://doi.org/10.1186/s12711-014-0058-4
Munoz, P. R., Resende, M. F. R., Huber, D. A., Quesada, T., Resende, M. D. V., Neale, D. B., Wegrzyn, J. L., Kirst, M., & Peter, G. F. (2014). Genomic Relationship Matrix for Correcting Pedigree Errors in Breeding Populations: Impact on Genetic Parameters and Genomic Selection Accuracy. Crop Science, 54(3), 1115–1123. https://doi.org/10.2135/cropsci2012.12.0673
O’Neill, C. J., Swain, D. L., & Kadarmideen, H. N. (2010). Evolutionary process of Bos taurus cattle in favourable versus unfavourable environments and its implications for genetic selection. Evolutionary Applications, 3(5–6), 422–433. https://doi.org/10.1111/j.1752-4571.2010.00151.x
Pérez-Enciso, M., Forneris, N., de los Campos, G., & Legarra, A. (2017). Evaluating Sequence-Based Genomic Prediction with an Efficient New Simulator. Genetics, 205(2), 939–953. https://doi.org/10.1534/genetics.116.194878
Pérez-Enciso, M., Ramírez-Ayala, L. C., & Zingaretti, L. M. (2020). SeqBreed: a python tool to evaluate genomic prediction in complex scenarios. Genetic Selection Evolution, 52, 7. https://doi.org/10.1186/s12711-020-0530-2
Porto-Neto, L. R., Reverter, A., Prayaga, K. C., Chan, E. K. F., Johnston, D. J., Hawken, R. J., Fordyce, G., Garcia, J. F., Sonstegard, T. S., Bolormaa, S., Goddard, M. E., Burrow, H. M., Henshall, J. M., Lehnert, S. A., & Barendse, W. (2014). The Genetic Architecture of Climatic Adaptation of Tropical Cattle. PLoS ONE, 9(11), e113284. https://doi.org/10.1371/journal.pone.0113284
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. American Journal of Human Genetics, 81(3), 559–575. https://doi.org/10.1086/519795
Ramírez Ayala, L. C. (2024). Supplementary Table 1. QTL regions for each of these three sets of phenotypes from the QTL database. figshare. Dataset. https://doi.org/10.6084/m9.figshare.27935052
Rendel, J. (1974). The Role of Breeding and Genetics in Animal Production Improvement in the Developing Countries. Genetics, 78(1), 563–575. https://doi.org/10.1093/genetics/78.1.563
Rodriguez Neira, J. D., Peripolli, E., de Negreiros, M. P. M., Espigolan, R., López-Correa, R., Aguilar, I., Lobo, R. B., & Baldi, F. (2022). Prediction ability for growth and maternal traits using SNP arrays based on different marker densities in Nellore cattle using the ssGBLUP. Journal of Applied Genetics, 63(2), 389–400. https://doi.org/10.1007/s13353-022-00685-0
Rubio Lozano, M. S., Ngapo, T. M., & Huerta-Leidenz, N. (2021). Tropical Beef: Is There an Axiomatic Basis to Define the Concept? Foods, 10(5), 1025. https://doi.org/10.3390/foods10051025
Scheffler, T. L. (2022). Connecting Heat Tolerance and Tenderness in Bos indicus Influenced Cattle. Animals: An Open Access Journal from MDPI, 12(3), 220. https://doi.org/10.3390/ani12030220
Schutt, K. M., Burrow, H. M., Thompson, J. M., & Bindon, B. M. (2009). Brahman and Brahman crossbred cattle grown on pasture and in feedlots in subtropical and temperate Australia. 1. Carcass quality. Animal Production Science, 49(6), 426–438. https://doi.org/10.1071/EA08081
Sinha, D., Maurya, A. K., Abdi, G., Majeed, M., Agarwal, R., Mukherjee, R., Ganguly, S., Aziz, R., Bhatia, M., Majgaonkar, A., Seal, S., Das, M., Banerjee, S., Chowdhury, S., Adeyemi, S. B., & Chen, J. T. (2023). Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals. Genes, 14(7), 1484. https://doi.org/10.3390/genes14071484
Strandén, I., Kantanen, J., Russo, I. R. M., Orozco-terWengel, P., & Bruford, M. W. (2019). Genomic selection strategies for breeding adaptation and production in dairy cattle under climate change. Heredity, 123, 307–317. https://doi.org/10.1038/s41437-019-0207-1
Su, G., Guldbrandtsen, B., Gregersen, V. R., & Lund, M. S. (2010). Preliminary investigation on reliability of genomic estimated breeding values in the Danish Holstein population. Journal of Dairy Science, 93(3), 1175–1183. https://doi.org/10.3168/jds.2009-2192
Utsunomiya, Y. T., Milanesi, M., Fortes, M. R. S., Porto-Neto, L. R., Utsunomiya, A. T. H., Silva, M. V. G. B., Garcia, J. F., & Ajmone-Marsan, P. (2019). Genomic clues of the evolutionary history of Bos indicus cattle. Animal Genetics, 50(6), 557–568. https://doi.org/10.1111/age.12836
VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414–4423. https://doi.org/10.3168/jds.2007-0980
Ward, J. A., McHugo, G. P., Dover, M. J., Hall, T. J., Ng’ang’a, S. I., Sonstegard, T. S., Bradley, D. G., Frantz, L. A. F., Salter-Townshend, M., & MacHugh, D. E. (2022). Genome-wide local ancestry and evidence for mitonuclear coadaptation in African hybrid cattle populations.
IScience, 25(7), 104672. https://doi.org/10.1016/j.isci.2022.104672
Watterson, G. A. (1975). On the Number of Segregating Sites in Genetical Models without Recombination. Theoretical Population Biology, 7, 256–276. https://doi.org/10.1016/0040-5809(75)90020-9
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Lino César Ramírez Ayala, Jordi Leno-Colorado, Laura M. Zingaretti, Elies Ramón Gurrea, Yuliaxis Ramayo-Caldas, Miguel Pérez-Enciso
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.