Evaluating Genomic Selection in beef cattle: Insights from computer simulations using real SNP data

Authors

  • Lino César Ramírez Ayala (1)Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Plant and Animal Genomics Program. Carrer de la Vall Moronta. Edifici CRAG. Campus UAB, 08193 Cerdanyola del Valles, Spain. (2) Institute of Agrifood Research and Technology (IRTA). Animal Breeding and Genetics Program. Torre Marimon, 08140. Caldes de Montbui, Spain. https://orcid.org/0000-0002-9473-6646
  • Jordi Leno-Colorado Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Plant and Animal Genomics Program. Carrer de la Vall Moronta. Edifici CRAG. Campus UAB, 08193 Cerdanyola del Valles, Spain. https://orcid.org/0000-0001-6049-256X
  • Laura M. Zingaretti Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Plant and Animal Genomics Program. Carrer de la Vall Moronta. Edifici CRAG. Campus UAB, 08193 Cerdanyola del Valles, Spain. https://orcid.org/0000-0001-5618-2630
  • Elies Ramón Gurrea (1)Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Plant and Animal Genomics Program. Carrer de la Vall Moronta. Edifici CRAG. Campus UAB, 08193 Cerdanyola del Valles, Spain. (3) Unit of Biomarkers and Susceptibility (UBS). Oncology Data Analytics Program (ODAP), ONCOBELL Program. Bellvitge Biomedical Research Institute (IDIBELL), 08908. L’Hospitalet de Llobregat, Spain. 3Unit of Biomarkers and Susceptibility (UBS). Oncology Data Analytics Program (ODAP), ONCOBELL Program. Bellvitge Biomedical Research Institute (IDIBELL), 08908. L’Hospitalet de Llobregat, Spain. https://orcid.org/0000-0002-7953-8115
  • Yuliaxis Ramayo-Caldas (1)Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Plant and Animal Genomics Program. Carrer de la Vall Moronta. Edifici CRAG. Campus UAB, 08193 Cerdanyola del Valles, Spain. (2) Institute of Agrifood Research and Technology (IRTA). Animal Breeding and Genetics Program. Torre Marimon, 08140. Caldes de Montbui, Spain. https://orcid.org/0000-0002-8142-0159
  • Miguel Pérez-Enciso 1 Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB. Plant and Animal Genomics Program. Carrer de la Vall Moronta. Edifici CRAG. Campus UAB, 08193 Cerdanyola del Valles, Spain. https://orcid.org/0000-0003-3524-995X

DOI:

https://doi.org/10.57201/ieuna2424208

Keywords:

predictive accuracy, marker selection, crossbreeding

Abstract

Genomic Selection (GS) is a method that employs genomic data to estimate breeding values and rank candidates for selection. Despite its numerous advantages, its application in cattle breeding programs remains in the early stages in many livestock systems developed in tropical and subtropical environments, such as those in Paraguay. Computational simulations are powerful tools that enhance our understanding of GS applications in different scenarios and are invaluable as an initial step before implementing this technique in "real" genetic improvement programs. In this study, real data from single nucleotide polymorphisms (SNPs) of the Indicus and Taurus breeds were employed to simulate three crossing schemes: F1 crosses, grading up, and rotational crosses. Phenotypes were selected for traits related to shear force, growth, and tolerance. The predictive accuracy of three 50k SNP chips, differing in their SNP selection methodologies, was compared: random selection, selection based on minimum allele frequency differences between breeds, and selection based on minimum allele frequency differences between breeds with a threshold of 0.09 in Taurus. The findings indicate that rotational crossing demonstrates optimal predictive accuracy (0.38), while marker selection based on allele frequency differences between breeds (0.18 and 0.17, respectively) does not benefit predictions significantly.

Downloads

Download data is not yet available.

References

Alencar, M. M., Fraga, A. B., é da Silva, A. M. (2005). Adaptação de genótipos a ambientes tropicais resistência à mosca-dos-chifres (Haematobia irritans, linnaeus) e ao carrapato (Boophilus microplus, CANESTRINI) em diferentes genótipos bovinos. Agrociencia, 9 (1-2), 579–585.

Berry, D. P., & Crowley, J. J. (2013). Cell biology symposium: Genetics of feed efficiency in dairy and beef cattle. Journal of Animal Science, 91(4), 1594–1613. https://doi.org/10.2527/jas.2012-5862

Boonkum, W., & Duangjinda, M. (2015). Estimation of genetic parameters for heat stress, including dominance gene effects, on milk yield in Thai Holstein dairy cattle. Animal Science Journal, 86(3), 245–250. https://doi.org/10.1111/asj.12276

Bovine Hapmap Consortium. (2009). Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds. Science, 324(5926), 528–532. https://doi.org/10.1126/science.1167936

Browning, B. L., & Browning, S. R. (2016). Genotype Imputation with Millions of Reference Samples. American Journal of Human Genetics, 98(1), 116–126. https://doi.org/10.1016/j.ajhg.2015.11.020

Budhlakoti, N., Kushwaha, A. K., Rai, A., Chaturvedi, K. K., Kumar, A., Pradhan, A. K., Kumar, U., Kumar, R. R., Juliana, P., Mishra, D. C., and Kumar, S. (2022). Genomic Selection: A Tool for Accelerating the Efficiency of Molecular Breeding for Development of Climate-Resilient Crops. Frontiers in Genetics, 13. https://doi.org/10.3389/fgene.2022.832153

Bunning, H., Wall, E., Chagunda, M. G. G., Banos, G., & Simm, G. (2019). Heterosis in cattle crossbreeding schemes in tropical regions: meta-analysis of effects of breed combination, trait type, and climate on level of heterosis. Journal of Animal Science, 97(1), 29–34. https://doi.org/10.1093/jas/sky406

Burrow, H. M. (2001). Variances and covariances between productive and adaptive traits and temperament in a composite breed of tropical beef cattle. Livestock Production Science, 70(3), 213–233. https://doi.org/10.1016/S0301-6226(01)00178-6

Burrow, H. M. (2012). Importance of adaptation and genotype × environment interactions in tropical beef breeding systems. Animal, 6(5), 729–740. https://doi.org/10.1017/S175173111200002X

Burrow, H. M., Moore, S. S., Johnston, D. J., Barendse, W., & Bindon, B. M. (2001). Quantitative and molecular genetic influences on properties of beef: A review. Australian Journal of Experimental Agriculture, 41(7), 893–919. https://doi.org/10.1071/EA00015

Caballero, A., Tenesa, A., & Keightley, P. D. (2015). The Nature of Genetic Variation for Complex Traits Revealed by GWAS and Regional Heritability Mapping Analyses. Genetics, 201(4), 1601–1613. https://doi.org/10.1534/genetics.115.177220

Cooke, R. F., Daigle, C. L., Moriel, P., Smith, S. B., Tedeschi, L. O., & Vendramini, J. M. B. (2020). Cattle adapted to tropical and subtropical environments: social, nutritional, and carcass quality considerations. Journal of Animal Science, 98(2). https://doi.org/10.1093/jas/skaa015

Cucco, D., Ferraz, J., Eler, J., Balieiro, J., Mattos, E., & Varona, L. (2010). Genetic parameters for postweaning traits in Braunvieh cattle. Genetics and Molecular Research, 9(1), 545–553. https://doi.org/10.4238/vol9-1gmr764

Cv, S. (2015). Cross-breeding in Cattle for Milk Production: Achievements, Challenges and Opportunities in India-A Review. Advances in Dairy Research, 4(3), 1–14. https://doi.org/10.4172/2329-888x.1000158

Dadi, H., Kim, J. J., Yoon, D., & Kim, K. S. (2012). Evaluation of Single Nucleotide Polymorphisms (SNPs) Genotyped by the Illumina Bovine SNP50K in Cattle Focusing on Hanwoo Breed. Asian-Australasian Journal of Animal Sciences, 25(1), 28–32. https://doi.org/10.5713/ajas.2011.11232

Dodds, K. G., Auvray, B., Newman, S. A. N., & McEwan, J. C. (2014). Genomic breed prediction in New Zealand sheep. BMC Genetics, 15, 92. https://doi.org/10.1186/s12863-014-0092-9

Eiríksson, J. H., Strandén, I., Su, G., Mäntysaari, E. A., & Christensen, O. F. (2022). Local breed proportions and local breed heterozygosity in genomic predictions for crossbred dairy cows. Journal of Dairy Science, 105(12), 9822–9836. https://doi.org/10.3168/jds.2022-22225

Elzo, M. A., Johnson, D. D., Wasdin, J. G., & Driver, J. D. (2012). Carcass and meat palatability breed differences and heterosis effects in an Angus-Brahman multibreed population. Meat Science, 90(1), 87–92. https://doi.org/10.1016/j.meatsci.2011.06.010

Esrafili Taze Kand Mohammaddiyeh, M., Rafat, S. A., Shodja, J., Javanmard, A., & Esfandyari, H. (2023). Selective genotyping to implement genomic selection in beef cattle breeding. Frontiers in Genetics, 14, 1083106. https://doi.org/10.3389/fgene.2023.1083106

Fernandes Júnior, G. A., Peripolli, E., Schmidt, P. I., Campos, G. S., Mota, L. F. M., Mercadante, M. E. Z., Baldi, F., Carvalheiro, R., & de

Albuquerque, L. G. (2022). Current applications and perspectives of genomic selection in Bos indicus (Nellore) cattle. Livestock Science, 263. https://doi.org/10.1016/j.livsci.2022.105001

Galukande, E., Mulindwa, H., Wurzinger, M., Roschinsky, R., Mwai, A. O., & Sölkner, J. (2013). Cross-breeding cattle for milk production in the tropics: achievements, challenges and opportunities. Animal Genetic Resources/Ressources Génétiques Animales/Recursos Genéticos Animales, 52, 111–125. https://doi.org/10.1017/s2078633612000471

Goddard, M. E. & Hayes, B. J. (2007). Genomic selection. Journal of Animal Breeding and Genetics, 124(6), 323–330. https://doi.org/10.1111/j.1439-0388.2007.00702.x

Hayes, B. J., Lewin, H. A., & Goddard, M. E. (2013). The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics, 29(4), 206–214. https://doi.org/10.1016/j.tig.2012.11.009

Henshall, J. M. (2004). A genetic analysis of parasite resistance traits in a tropically adapted line of Bos taurus. Australian Journal of Agricultural Research, 55(11), 1109–1116. https://doi.org/10.1071/AR03085

Hewetson, R. W. (1972). The inheritance of resistance by cattle to cattle tick. Australian Veterinary Journal, 48(5), 299–303. https://doi.org/10.1111/j.1751-0813.1972.tb05161.x

Hu, Z. L., Park, C. A., & Reecy, J. M. (2022). Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Research, 50(D1), D956–D961. https://doi.org/10.1093/nar/gkab1116

Kasarapu, P., Porto-Neto, L. R., Fortes, M. R. S., Lehnert, S. A., Mudadu, M. A., Coutinho, L., Regitano, L., George, A., & Reverter, A. (2017). The Bos taurus–Bos indicus balance in fertility and milk related genes. PLoS ONE, 12(8), e0181930. https://doi.org/10.1371/journal.pone.0181930

Kim, J.-J., Farnir, F., Savell, J., & Taylor, J. F. (2003). Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle. Journal of Animal Science, 81(8), 1933–1942. https://doi.org/10.2527/2003.8181933x

Kockum, I., Huang, J., & Stridh, P. (2023). Overview of Genotyping Technologies and Methods. Current Protocols, 3(4), e727. https://doi.org/10.1002/cpz1.727

Leroy, G., Baumung, R., Boettcher, P., Scherf, B., & Hoffmann, I. (2016). Review: Sustainability of crossbreeding in developing countries; definitely not like crossing a meadow…. Animal: An International Journal of Animal Bioscience, 10(2), 262–273. https://doi.org/10.1017/S175173111500213X

Machado, M. A., Azevedo, A. L., Teodoro, R. L., Pires, M. A., Peixoto, M. G., de Freitas, C., Prata, M. C., Furlong, J., da Silva, M. V., Guimarães, S. E., Regitano, L. C., Coutinho, L. L., Gasparin, G., & Verneque, R. S. (2010). Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus × Bos indicus). BMC Genomics, 11, 280. https://doi.org/10.1186/1471-2164-11-280

Maciel, I. C. F., Barbosa, F. A., Tomich, T. R., Ribeiro, L., Alvarenga, R. C., Lopes, L. S., Malacco, V. M. R., Rowntree, J. E., Thompson, L. R., & Lana, Â. M. Q. (2019). Could the breed composition improve performance and change the enteric methane emissions from beef cattle in a tropical intensive production system? PLoS ONE, 14(7), e0220247. https://doi.org/10.1371/journal.pone.0220247

Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819–1829. https://doi.org/10.1093/genetics/157.4.1819

Moghaddar, N., Swan, A. A., & Van Der Werf, J. H. J. (2014). Comparing genomic prediction accuracy from purebred, crossbred and combined purebred and crossbred reference populations in sheep. Genet Sel Evol, 46, 58. https://doi.org/10.1186/s12711-014-0058-4

Munoz, P. R., Resende, M. F. R., Huber, D. A., Quesada, T., Resende, M. D. V., Neale, D. B., Wegrzyn, J. L., Kirst, M., & Peter, G. F. (2014). Genomic Relationship Matrix for Correcting Pedigree Errors in Breeding Populations: Impact on Genetic Parameters and Genomic Selection Accuracy. Crop Science, 54(3), 1115–1123. https://doi.org/10.2135/cropsci2012.12.0673

O’Neill, C. J., Swain, D. L., & Kadarmideen, H. N. (2010). Evolutionary process of Bos taurus cattle in favourable versus unfavourable environments and its implications for genetic selection. Evolutionary Applications, 3(5–6), 422–433. https://doi.org/10.1111/j.1752-4571.2010.00151.x

Pérez-Enciso, M., Forneris, N., de los Campos, G., & Legarra, A. (2017). Evaluating Sequence-Based Genomic Prediction with an Efficient New Simulator. Genetics, 205(2), 939–953. https://doi.org/10.1534/genetics.116.194878

Pérez-Enciso, M., Ramírez-Ayala, L. C., & Zingaretti, L. M. (2020). SeqBreed: a python tool to evaluate genomic prediction in complex scenarios. Genetic Selection Evolution, 52, 7. https://doi.org/10.1186/s12711-020-0530-2

Porto-Neto, L. R., Reverter, A., Prayaga, K. C., Chan, E. K. F., Johnston, D. J., Hawken, R. J., Fordyce, G., Garcia, J. F., Sonstegard, T. S., Bolormaa, S., Goddard, M. E., Burrow, H. M., Henshall, J. M., Lehnert, S. A., & Barendse, W. (2014). The Genetic Architecture of Climatic Adaptation of Tropical Cattle. PLoS ONE, 9(11), e113284. https://doi.org/10.1371/journal.pone.0113284

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. American Journal of Human Genetics, 81(3), 559–575. https://doi.org/10.1086/519795

Ramírez Ayala, L. C. (2024). Supplementary Table 1. QTL regions for each of these three sets of phenotypes from the QTL database. figshare. Dataset. https://doi.org/10.6084/m9.figshare.27935052

Rendel, J. (1974). The Role of Breeding and Genetics in Animal Production Improvement in the Developing Countries. Genetics, 78(1), 563–575. https://doi.org/10.1093/genetics/78.1.563

Rodriguez Neira, J. D., Peripolli, E., de Negreiros, M. P. M., Espigolan, R., López-Correa, R., Aguilar, I., Lobo, R. B., & Baldi, F. (2022). Prediction ability for growth and maternal traits using SNP arrays based on different marker densities in Nellore cattle using the ssGBLUP. Journal of Applied Genetics, 63(2), 389–400. https://doi.org/10.1007/s13353-022-00685-0

Rubio Lozano, M. S., Ngapo, T. M., & Huerta-Leidenz, N. (2021). Tropical Beef: Is There an Axiomatic Basis to Define the Concept? Foods, 10(5), 1025. https://doi.org/10.3390/foods10051025

Scheffler, T. L. (2022). Connecting Heat Tolerance and Tenderness in Bos indicus Influenced Cattle. Animals: An Open Access Journal from MDPI, 12(3), 220. https://doi.org/10.3390/ani12030220

Schutt, K. M., Burrow, H. M., Thompson, J. M., & Bindon, B. M. (2009). Brahman and Brahman crossbred cattle grown on pasture and in feedlots in subtropical and temperate Australia. 1. Carcass quality. Animal Production Science, 49(6), 426–438. https://doi.org/10.1071/EA08081

Sinha, D., Maurya, A. K., Abdi, G., Majeed, M., Agarwal, R., Mukherjee, R., Ganguly, S., Aziz, R., Bhatia, M., Majgaonkar, A., Seal, S., Das, M., Banerjee, S., Chowdhury, S., Adeyemi, S. B., & Chen, J. T. (2023). Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals. Genes, 14(7), 1484. https://doi.org/10.3390/genes14071484

Strandén, I., Kantanen, J., Russo, I. R. M., Orozco-terWengel, P., & Bruford, M. W. (2019). Genomic selection strategies for breeding adaptation and production in dairy cattle under climate change. Heredity, 123, 307–317. https://doi.org/10.1038/s41437-019-0207-1

Su, G., Guldbrandtsen, B., Gregersen, V. R., & Lund, M. S. (2010). Preliminary investigation on reliability of genomic estimated breeding values in the Danish Holstein population. Journal of Dairy Science, 93(3), 1175–1183. https://doi.org/10.3168/jds.2009-2192

Utsunomiya, Y. T., Milanesi, M., Fortes, M. R. S., Porto-Neto, L. R., Utsunomiya, A. T. H., Silva, M. V. G. B., Garcia, J. F., & Ajmone-Marsan, P. (2019). Genomic clues of the evolutionary history of Bos indicus cattle. Animal Genetics, 50(6), 557–568. https://doi.org/10.1111/age.12836

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414–4423. https://doi.org/10.3168/jds.2007-0980

Ward, J. A., McHugo, G. P., Dover, M. J., Hall, T. J., Ng’ang’a, S. I., Sonstegard, T. S., Bradley, D. G., Frantz, L. A. F., Salter-Townshend, M., & MacHugh, D. E. (2022). Genome-wide local ancestry and evidence for mitonuclear coadaptation in African hybrid cattle populations.

IScience, 25(7), 104672. https://doi.org/10.1016/j.isci.2022.104672

Watterson, G. A. (1975). On the Number of Segregating Sites in Genetical Models without Recombination. Theoretical Population Biology, 7, 256–276. https://doi.org/10.1016/0040-5809(75)90020-9

Downloads

Published

2024-12-23

How to Cite

Ramírez Ayala, L. C., Leno-Colorado, J., M. Zingaretti, L., Gurrea, E. R., Ramayo-Caldas, Y., & Pérez-Enciso, M. (2024). Evaluating Genomic Selection in beef cattle: Insights from computer simulations using real SNP data. Journal Investigaciones Y Estudios - UNA , 15(2), 35–41. https://doi.org/10.57201/ieuna2424208

Similar Articles

You may also start an advanced similarity search for this article.