Control of the movement of a wheelchair using an Emotiv neural sensor

Authors

  • Guillermo David Amarilla Brassel Universidad Nacional de Asunción. Facultad Politécnica. Grupo de Investigación en Electrónica y Mecatrónica. San Lorenzo, Paraguay
  • Lorena Zalazar Benítez Universidad Nacional de Asunción. Facultad Politécnica. Grupo de Investigación en Electrónica y Mecatrónica. San Lorenzo, Paraguay
  • Norma Graciela Silva Ortíz Universidad Nacional de Asunción. Facultad Politécnica. Grupo de Investigación en Electrónica y Mecatrónica. San Lorenzo, Paraguay

DOI:

https://doi.org/10.47133/IEUNA4b

Keywords:

control, Emotiv, silla de ruedas

Abstract

With the new method of                                 controlling the movement of a wheelchair by means of a neuronal sensor, it sought to obtain a technology in which the interaction of people with motor disabilities and their environment can be helped, having as only communication channel the cerebral activity. The main objective is to develop a system that controls the movement of a wheelchair using a neural sensor. The investigations by means of the analysis and the tests were obtained an index of the effectiveness the mayor 75% for the stimuli of expressive and 65% for the cognitive ones for the control of the chair, taking into account that for the use of diverse Prior to a better response of the sensor to the stimuli performed. The execution of the system was achieved allowing a user to control and manage the chair using electrical signals produced by the brain, effectively.

Downloads

Download data is not yet available.

References

Ang, K. K., Ang, K. K., Guan, C., Chua, K. S., Ang, B. T., Kuah, C. W…Zhang, H. (2011, Octubre). A Large Clinical Study on the

Ability of Stroke Patients to Use an EEG-based Motor Imagery Brain-Computer Interface. Clinical EEG and

Neuroscience, 42(4).

Arduino (2020). Disponible en: https://www.arduino.cc/en/Main/ArduinoBoardMega2560

Aznar Casanova, J. A. (2017). La consciencia: La interfaz polinómica de la subjetividad http://www.ub.edu/pa1/node/130

Barcojo, A. R. (2014). Unidad Didáctica: Control y robótica. Sección: Sensores. http://cmapspublic2.ihmc.us/rid=1H2F1807L-

JP0SG2-J1J/encoder.pdf

COPA-DATA. (2016). Interfaz Hombre-Maquina (HMI). Disponible en: https://www.copadata.com/es/soluciones-hmi-

scada/interfaz-hombre-maquina-hmi/

Electronilab. (2020). Módulo LM2596 Convertidor de Voltaje DC-DC Buck 1.25V-35V. Disponible en

https://electronilab.co/tienda/modulo-lm2596-convertidor-de-voltaje-dc-dc-buck-1-25v-35v/

Emotiv. (2017). Emotiv Software Development. Disponible en: Kit.cmap.polytechnique.fr/~jingrebeccali/ecole_dete_france_excellence_files_2017/UserManualForEmotivXavierControlPanel_Epoc.pdf

Guin, A. & Bikash Baishya, B. (2013) Brain Controlled Wheelchair using LabVIEW. Disponible en: https://www.pantechsolutions.net/blog/wp-content/uploads/2017/10/Brain-controlled-wheel-chair-using-Labview.pdf

Hessmer, D. R. (2013). IBT-2 H-Bridge with Arduino. Disponible en: http://www.hessmer.org/blog/2013/12/28/ibt-2-h-bridge-with-arduino/

National Spinal Cord Injury Statistical Center. (2011). Spinal Cord Injury Facts and Figures at a Glance. Birmingham, Estados Unidos: Universidad de Alabama, NSCISC.

Observatorio Tecnológico de Hidalgo. (2016). Esta silla de ruedas se controla con expresiones faciales. Disponible en: https://otech.uaeh.edu.mx/noti/index.php/tech/esta-silla-de-ruedas-se-controla-con-expresiones-faciales/

Pantech Solutions. (2017) Brain controlled wheel chair [Internet]. Chennai: Pantech solutions. Disponible en: https://www.pantechsolutions.net/brain-controlled-wheel-chair

Putty.(2019) Disponible en: https://www.putty.org/

Sinha, U. & Kanthi, M. (2016) Mind Controlled Wheelchair. IJCTA, 9(39): 19-28. Disponible en: https://www.pantechsolutions.net/blog/wp-content/uploads/2017/10/Brain-controlled-wheel-chair.pdf

Soler V., Marco A., Rodríguez A., Harold A., Peña C. & César A. (2014). Desarrollo de un robot explorador operado mediante neuroseñales. Revista Politécnica,10(19), 125-134. Disponible en: http://revistas.elpoli.edu.co/index.php/pol/article/download/479/507

Wang, S., Esfahani, E. T. & Sundararajan, V. (2012). Evaluation of SSVEP as Passive Feedback for Improving the Performance of Brain Machine Interfaces. ASME 2012 International Design Engineering Technical Conferences & Computers

World Health Organization, The World Bank. (2011) World report on disability. Ginebra, Suiza : OPS

Downloads

Published

2020-06-30

How to Cite

Control of the movement of a wheelchair using an Emotiv neural sensor. (2020). Journal Investigaciones Y Estudios - UNA , 11(1), 26-33. https://doi.org/10.47133/IEUNA4b

Similar Articles

1-10 of 115

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)