Growth and tolerance of Trichoderma asperelloides TF5 in potato dextrose agar (PDA) at different concentrations of cypermethrin

Authors

  • Vicente Gabriel Gaona Duarte (1) Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay. (2) Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Científicas y Tecnológicas. San Lorenzo, Paraguay.
  • Rocio de las Nieves Coronel Cristaldo Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay
  • Nicole Solalinde Cristaldo Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay
  • Jana Patiño Santander Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay.
  • Ana Flavia Galeano Amarilla Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay
  • Anabel Ovelar Maldonado Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay
  • Gilberto Antonio Benitez (1) Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay. (2) Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Científicas y Tecnológicas. San Lorenzo, Paraguay.

DOI:

https://doi.org/10.18004/rdgic.investig.estud.una.2025.junio.2916014634

Keywords:

insecticide, pyrethroid, tolerance, bioremediation, mycoremediation

Abstract

The continuous and excessive use of pyrethroid insecticides has generated numerous environmental and public health problems, making their removal from the environment a topic of interest. Biological resources such as microorganisms or enzymes, with the ability to degrade or eliminate pesticides, have become a powerful tool for the remediation of environments contaminated with these compounds. The objective of this research was to evaluate the tolerance of Trichoderma asperelloides TF5 to various concentrations of cypermethrin and to analyze its potential for use in bioremediation. For the study, a solid culture medium (PDA) with cypermethrin concentrations of 10, 100, 200, 500, 1000, and 2000 mg/L was used. Mycelial growth and the percentage of growth inhibition of Trichoderma were evaluated as a function of the different concentrations. The results demonstrated, based on a linear regression graph, that 50% inhibition of mycelial growth is achieved with a concentration of 1150 mg/L, a concentration comparable to that used in the field. Therefore, Trichoderma asperelloides TF5, due to its demonstrated tolerance, shows promising potential for application in bioremediation processes.

Downloads

Download data is not yet available.

Author Biographies

  • Vicente Gabriel Gaona Duarte, (1) Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay. (2) Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Científicas y Tecnológicas. San Lorenzo, Paraguay.

     

     

     

  • Rocio de las Nieves Coronel Cristaldo, Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay

     

     

     

     

     

  • Nicole Solalinde Cristaldo, Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay

     

     

     

  • Jana Patiño Santander, Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay.

     

     

     

  • Ana Flavia Galeano Amarilla, Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay

     

     

     

     

  • Anabel Ovelar Maldonado, Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay

     

     

     

     

  • Gilberto Antonio Benitez, (1) Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biotecnología. San Lorenzo, Paraguay. (2) Universidad Nacional de Asunción. Centro Multidisciplinario de Investigaciones Científicas y Tecnológicas. San Lorenzo, Paraguay.

     

     

     

     

References

Andrade-Hoyos, P., Rivera-Jiménez, M. N., Landero-Valenzuela, N., Silva-Rojas, H. V., Martínez-Salgado, S. J., y Romero-Arenas, O. (2023). Beneficios ecológicos y biológicos del hongo cosmopolita Trichoderma spp. en la agricultura: Una perspectiva en el campo mexicano. Revista Argentina de Microbiología, 55(4), 366–377. https://doi.org/10.1016/j.ram.2023.06.005

Castellanos González, L., Lorenzo Nicao, M. E., Muiño, B. L., Hernández Pérez, R., y Guillen Sánchez, D. (2015). Efecto in vitro de plaguicidas comerciales sobre Trichoderma harzianum cepa A-34. Revista de la Facultad de Ciencias Agrarias, 47(2), 185-196.

Cámara Paraguaya de Exportadores y Oleaginosas (CAPECO) (2024). El sector agrícola verificó un incremento del 23,3% al cierre del año 2023. https://capeco.org.py/2024/04/01/el-sector-agricola-verifico-un-incremento-del-233-al-cierre-del-ano-2023/

Chaparro, A. P., Carvajal, L. H., y Orduz, S. (2011). Fungicide tolerance of Trichoderma asperelloides and T. harzianum strains. Agricultural sciences, 2(03), 301. doi:10.4236/as.2011.23040

Chen, S., Hu, Q., Hu, M., Luo, J., Weng, Q., y Lai, K. (2011). Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresource technology, 102(17), 8110–8116. https://doi.org/10.1016/j.biortech.2011.06.055

Gajendiran, A. y Abraham, J. (2018). Una descripción general de los insecticidas piretroides. Frontiers in Biology, 13 , 79-90. https://doi.org/10.1007/s11515-018-1489-z

Harms, H., Schlosser, D. y Wick, L. Y. (2011). Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology,9(3), 177-192. https://doi.org/10.1038/nrmicro2519

Hernández-Melchor, D. J., Ferrera-Cerrato, R., y Alarcón, A. (2019). Trichoderma: importancia agrícola, biotecnológica, y sistemas de fermentación para producir biomasa y enzimas de interés industrial. Chilean journal of agricultural & animal sciences, 35(1), 98-112. http://dx.doi.org/10.4067/S0719-38902019005000205

Kaur, R., & Singh, J. (2021). Toxicity, monitoring, and biodegradation of cypermethrin insecticide: A review. Nature, environment and pollution technology, 20(5). https://doi.org/10.46488/NEPT.2021.v20i05.016

Lin, Q. S., Chen, S. H., Hu, M. Y. Hag, M. U., Yang, L. y Li, H. (2011). Biodegradation of cypermethin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. International Journal of Environmenta/ Science & Technology, 8(1), 45-56. doi.org/10.1007/BF03326194

López Arias, T. R., Esquivel Mattos, A., y Peris, S. (2021). Evaluación ecotoxicológica de arroyos de la reserva San Rafael y su zona de amortiguamiento mediante bioensayos con Daphnia magna y Lactuca sativa. Steviana, 7, 102–115. https://doi.org/10.56152/StevianaFacenV7A9_2015

Maqbool, Z., Hussain, S., Imran, M., Mahmood, F., Shahzad, T., Ahmed, Z., y Muzammil, S. (2016). Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. Environmental Science and Pollution Research International, 23(17), 16904–16925. https://doi.org/10.1007/s11356-016-7003-8

Mendarte-Alquisira, C., Alarcón, A., y Ferrera-Cerrato, R. (2024). Growth, tolerance, and enzyme activities of Trichoderma strains in culture media added with a pyrethroids-based insecticide. Revista Argentina de Microbiología, 56(1), 79-89. https://doi.org/10.1016/j.ram.2023.06.004

Odukkathil, G., y Vasudevan, N. (2013). Toxicity and bioremediation of pesticides in agricultural soil. Re/Views in Environmental Science and Bio/Technology, 12(4), 421–444. https://doi.org/10.1007/s11157-013-9320-4

Pointing, S. (2001). Feasibility of bioremediation by white-rot fungi. Applied microbiology and biotechnology, 57, 20-33. https://doi.org/10.1007/s002530100745

Ríos, M. Á. M., Villacorta, W. A. R., y Ramos, I. L. M. (2019). Crecimiento de Trichoderma asperellum en medio sólido utilizando como única fuente de carbono a los plaguicidas clorpirifos y cipermetrina. UCV-SCIENTIA, 11(2), 149-156.

Sabogal-Vargas, A. M., Wilson-Krugg, J., Rojas-Villacorta, W., De La Cruz-Noriega, M., Otiniano, N. M., Rojas-Flores, S., y Mendoza-Villanueva, K. (2023). In vitro compatibility of three native isolates of Trichoderma with the insecticide chlorpyrifos. Applied Sciences, 13(2), 811. https://doi.org/10.3390/app13020811

Terrero Yépez, P. I., Peñaherrera Villafuerte, S. L., Solís Hidalgo, Z. K., Vera Coello, D. I., Navarrete Cedeño, J. B., y Herrera Defaz, M. A.. (2018). Compatibilidad in vitro de Trichoderma spp. con fungicidas de uso común en cacao (Theobroma cacao L.). Investigación Agraria, 20(2), 146-151. https://doi.org/10.18004/investig.agrar.2018.diciembre.146-151

Tripathi, P., Singh, P.C., Mishra, A. y Chauhan, P. S. (2013). Trichoderma : un biorremediador potencial para la limpieza ambiental. Clean Technologies and Environ Policy, 15 , 541–550. https://doi.org/10.1007/s10098-012-0553-7

Published

2025-07-01

How to Cite

Growth and tolerance of Trichoderma asperelloides TF5 in potato dextrose agar (PDA) at different concentrations of cypermethrin. (2025). Journal Investigaciones Y Estudios - UNA , 16(1), 4-14. https://doi.org/10.18004/rdgic.investig.estud.una.2025.junio.2916014634

Similar Articles

You may also start an advanced similarity search for this article.