Vulnerabilidad intrínseca del miocardio auricular como mecanismo de génesis de fibrilación auricular en el síndrome de Wolff-Parkinson-White

Autores/as

  • Osmar Antonio Centurión

Palabras clave:

vulnerabilidad auricular, síndrome de WPW, electrograma auriculares anormales

Resumen

Los investigadores que describieron por primera vez el síndrome de Wolff-Parkinson-White (WPW) ya reconocieron la existencia de una asociación de ésta entidad con la fibrilación auricular (FA). Se han documentado episodios de FA hasta en un 30% de los pacientes con síndrome de WPW. Diversas modificaciones histológicas y electrofisiológicas del miocardio auricular, tales como, cambios fibrodegenerativos, aumento en la dispersión de los períodos refractarios, retardo en la conducción de los impulsos, conducción anisotrópica, e interacción con el sistema nervioso autonómico, se encuentran asociadas a la inducción, generación y persistencia de la FA. Mediante la estimulación auricular programada con extraestímulo simple durante el estudio electrofisiológico se pueden inducir varios parámetros de vulnerabilidad auricular aumentada. Por ejemplo, la actividad auricular repetitiva, la actividad auricular fragmentada, y el retardo en la conducción interauricular inducidos por un extraestímulo temprano en diástole en pacientes que poseen anormalidades electrofisiológicas del miocardio auricular, han sido utilizados como indicadores de vulnerabilidad auricular y como requisitos importantes para la génesis de la reentrada, y por ende, de la FA. Los pacientes con síndrome de WPW y FA paroxística poseen un número significativamente mayor de electrogramas auriculares anormalmente fragmentados y prolongados y una anormalidad electrofisiológica del músculo auricular significativamente mayor que los pacientes con síndrome de WPW sin FA paroxística. Estos resultados claramente demuestran que el miocardio auricular patológico y la vulnerabilidad intrínseca del miocardio auricular juegan un papel muy importante en el desarrollo de la FA en pacientes con el síndrome de WPW.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Luck JC, Engel TR. Dispersion of atrial refractoriness in patients with sinus node dysfunction. Circulation 1979; 60:404-12.

Engel TR, Luck JC, Leddy CL, Gonzalez AD. Diagnostic implications of atrial vulnerability. Pacing Clin Electrophysiol 1979; 2:208-13.

Engel TR, Gonzalez AD. Effects of digitalis on atrial vulnerability. Am J Cardiol 1978; 42:570-76.

Watson RM, Josephson ME. Atrial flutter. I. Electrophysiologic substrates and modes of initiation and termination. Am J Cardiol 1980; 45(4):732-41.

Ohe T, Matsuhisa M, Kamakura S, Yamada J, Sato I, Nakajima K, Shimomura K. Relation between the widening of the fragmented atrial activity zone and atrial fibrillation. Am J Cardiol 1983; 52(10):1219-22.

Shimizu A, Fukatani M, Tanigawa M, Mori M, Hashiba K. Intra-atrial conduction delay and fragmented atrial activity in patients with paroxysmal atrial fibrillation. Jpn Circ J 1989; 53:1023-30.

Hashiba K, Tanigawa M, Fukatani M, Shimizu A, Konoe A, Kadena M, Mori M. Electrophysiologic properties of atrial muscle in paroxysmal atrial fibrillation. Am J Cardiol 1989; 64:20J-23J.

Centurión OA, Isomoto S, Fukatani M, Shimizu A, Konoe A, Tanigawa M, et al. Relationship between atrial conduction defects and fractionated atrial endocardial electrograms in patients with sick sinus syndrome. Pacing Clin Electrophysiol 1993; 16:2022-33.

Cosio FG, Palacios J, Vidal JM, Cocina EG, Gómez-Sánchez MA, Tamargo L. Electrophysiologic studies in atrial fibrillation. Slow conduction of premature impulses: a possible manifestation of the background for reentry. Am J Cardiol 1983; 51:122-30.

Centurión OA, Fukatani M, Konoe A, Tanigawa M, Shimizu A, Isomoto S, Kadena M, Hashiba K.. Electrophysiological abnormalities of the atrial muscle in patients with sinus node dysfunction without tachyarrhythmias. Intern J Cardiol 1992; 37:41-50.

Centurión OA, Fukatani M, Shimizu A, Konoe A, Isomoto S, Tanigawa M, Kaibara M, Yano K. Anterograde and retrograde decremental conduction over left-sided accessory atrioventricular pathways in the Wolff-Parkinson-White syndrome. Am Heart J 1993;125:1038-47.

Wyndham CRC, Amat-y-Leon F, Wu D, Denes P, Dhingra R, Simpson R, Rosen KM. Effects of cycle length on atrial vulnerability. Circulation 1977; 55:260-7.

Ohe T, Shimomura K, Inagaki M. The effects of cycle length on the fragmented atrial activity zone in patients with sick sinus syndrome. J Electrocardiol 1987; 20:364-8.

Centurión OA, Isomoto S, Shimizu A, Konoe A, Hirata T, Kaibara M, Hano O, Yano K. Supernormal atrial conduction and its relation to atrial vulnerability and atrial fibrillation in patients with sick sinus syndrome and paroxysmal atrial fibrillation. Am Heart J 1994; 128:88-95.

Centurión OA, Shimizu A, Isomoto S, Konoe A, Hirata T, Hano O, Kaibara M, Yano K. Repetitive atrial firing and fragmented atrial activity elicited by extrastimuli in the sick sinus syndrome with and without abnormal atrial electrograms. Am J Med Sciences 1994; 307(4):247-54.

Wells JL Jr, Karp RB, Kouchoukos NT, MacLean WA, James TN, Waldo AL. Characterization of atrial fibrillation in man: studies following open heart surgery. Pacing Clin Electrophysiol 1978; 1:426-38.

Hashiba K, Centurión OA, Shimizu A. Electrophysiologic characteristics of human atrial muscle in paroxysmal atrial fibrillation. Am Heart J 1996; 131:778-89.

Centurion OA, Konoe A, Isomoto S, Hayano M, Yano K. Possible role of supernormal atrial conduction in the genesis of atrial fibrillation in patients with idiopathic paroxysmal atrial fibrillation. CHEST 1994; 106:842-7.

Wolff L, Parkinson J, White PD. Bundle branch block with short PR interval in healthy young people prone to paroxysmal tachycardia. Am Heart J 1930;5:685-704.

Isomoto S, Konoe A, Centurion OA, Hayano M, Kaibara M, Hirata T, Yano K. Electrophysiological effects of MS-551 in humans: A class III antiarrhythmic agent. Pacing Clin Electrophysiol 1995; 18:2022-7.

Isomoto S, Shimizu A, Konoe A, Kaibara M, Centurión OA, Fukatani M, Yano K. Electrophysiologic effects of E-4031, a new class III antiarrhythmic agent, in patients with supraventricular tachyarrhythmias. Am J Cardiol 1993;71:1464-7.

Alessie M, Bonke F, Schopman F. Circus movement in rabbit atrial muscle as a mecanism of tachycardia. II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. Circ Res 1976; 39:168-77.

Boineau JP, Schenessler RB, Mooney CR, Miller CB, Wylds AC, Hudson RD, et al. Natural and evoked atrial flutter due to circus movement in dogs: role of abnormal atrial pathways, slow conduction, non-uniform refractory period distribution and premature beats. Am J Cardiol 1980; 45:1167-81.

Konoe A, Fukatani M, Tanigawa M, Isomoto S, Kadena M, Sakamoto T, et al. Electrophysiological abnormalities of the atrial muscle in patients with manifest Wolff-Parkinson-White syndrome associated with paroxysmal atrial fibrillation. Pacing Clin Electrophysiol 1992; 15:1040-52.

Johnson NJ, Rosen MR. The distinction between triggered activity and other cardiac arrhythmias. In Brugada P, Wellens H, eds. Cardiac arrhtyhmias: Where do we go from here? Mount Kisko, NY: Futura Publisher, 1987:129-45.

Centurión OA, Fukatani M, Konoe A, Tanigawa M, Shimizu A, Isomoto S, et al. Different distribution of abnormal endocardial atrial electrograms within the right atrium in patients with sick sinus syndrome. Br Heart J 1992; 68:596-600.

Shimizu A, Centurión OA. Electrophysiological properties of the human atrium in atrial fibrillation. Cardiovasc Res 2002; 54:302-14.

Kumagai K, Akimitsu S, Kamahira K, Kawanami F, Yamanouchi Y, Hiroki T, Arakawa K. Electrophysiological properties in chronic lone atrial fibrillation. Circulation 1991; 84:1662-8.

Shimizu A, Konoe A, Centurión OA, Tanigawa M, Isomoto S, Fukatani M, et al. Electrophysiologic characteristics of repetitive atrial firing: atrial extrastimulus at four sites. Jpn J Cardiac Pacing Electrophysiol 1993; 9:126-31.

Moe GK. On the multiple wavelet hypothesis of atrial fibrillation. Arch Int Pharmacodyn 1962; 140:183-8.

Moe GK, Abildskov JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J 1959; 58:59-70.

Moe GK, Rheinboldt WC, Abildskov JA. A computer model of atrial fibrillation. Am Heart J 1964; 67:200-20.

Konings KT, Kirchhof CJHJ, Smeets JRLM, Wellens HJJ, Penn OC, Allessie MA. High-density mapping of electrically induced atrial fibrillation in Humans. Circulation 1994; 89:1665–80.

Alessie MA, Lammers WJEP, Bonke FIM. Experimental evaluation of Moe´s multiple wavelet hypothesis of atrial fibrillation. In Zipes DP, Jalife J, eds. Cardiac Electrophysiology and Arrythmias. Orlando, FL: Grune & Stratton; 1985. p. 265–75.

Attuel P, Childers R, Cauchemez B, Poveda J, Mugica J, Coumel P. Failure in the rate adaptation of the atrial refractory period: its relationship to vulnerability. Int J Cardiol 1982; 2:179–97.

Spach MS, Dolber PC. The relation between discontinuous propagation in anisotropic cardiac muscle and the "vulnerable period" of reentry. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology and arrhythmias. Orlando, Florida: Grune and Stratton, 1985;241-252.

Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at microscopic level in human cardiac muscle: Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res 1986; 58:356-71.

Spach MS, Miller WT 3rd, Dolber PC, Kootsey JM, Sommer JR, Mosher CE Jr. The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity. Circ Res 1982; 50:175-91.

Spach MS, Miller WT 3rd, Geselowitz DB, Barr RC, Kootsey JM, Johnson EA. The discontinuous nature of propagation in normal canine cardiac muscle: evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circ Res 1981;48:39-54.

Spach MS, Barr RC, Serwer GA, Kootsey JM, Johnson EA. Extracellular potential related to intracellular action potentials in the dog Purkinje system. Circ Res 1972; 30:505-11.

Spach MS, Dolber PC, Anderson PAW. Multiple regional differences in cellular properties that regulate repolarization and contraction in the right atrium of adult and newborn dogs. Circ Res 1989 ;65:1594-611.

Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at microscopic level in human cardiac muscle. Circ Res 1986; 58:356-71.

Lesch MD, Spear JF, Simpson MB. A computer model of the electrogram: what causes fractionation? J Electrocardiol 1988; 21:S69-73.

Davies MJ, Pomerance A. Pathology of atrial fibrillation in man. Br Heart J 1972; 34:520-25.

Gerdts E, Oikarinen L, Palmieri V, Otterstad JE, Wachtell K, Boman K, et al. Correlates of left atrial size in hypertensive patients with left ventricular hypertrophy: The losartan intervention for end point reduction in hypertension (LIFE) study. Hypertension 2002; 39:739-43.

Miyatake K, Izumi S, Shimizu A, Kinoshita N, Okamoto M, Sakakibara H, Nimura Y. et al. Right atrial flow topography in healthy subjects studied with real-time two-dimensional Doppler flow imaging technique. J Am Coll Cardiol 1986; 7:425–31.

Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy C. Left atrial size and the risk of stroke and death. The framingham heart study. Circulation 1995; 92(4):835-41.

Gottdiener JS, Reda DJ, Williams DW, Materson BJ, Cushman W, Anderson RJ. Effect of single-drug therapy on reduction of left atrial size in mild to moderate hypertension: Comparison of six antihypertensive agents. Circulation 1998;98:140-8.

Kiès P, Leclercq C, Bleeker GB, Crocq C, Molhoek SG, Poulain C, et al. Cardiac resynchronisation therapy in chronic atrial fibrillation: impact on left atrial size and reversal to sinus rhythm. Heart 2006; 92(4):490-94.

Centurión OA, Shimizu A, Isomoto S, Konoe A. Mechanisms for the genesis of paroxysmal atrial fibrillation in the Wolff-Parkinson-White syndrome: Intrinsic atrial muscle vulnerability vs. electrophysiological properties of the accessory pathway. Europace 2008; 10:294-302.

Centurion OA, Shimizu A, Isomoto S, Hano O, Hirata T, Konoe A, Kaibara M, Yano K. Incidence and electrophysiologic characteristics of supernormal atrial conduction in humans. J Electrocardiology 1994; 27:61-9.

Khan FZ, Dutka DP, Fynn SP. Recorded spontaneous sudden cardiac arrest in a patient with pre-excited atrial fibrillation. Europace 2009; 11:124.

Schwieler JH, Zlochiver S, Pandit SV, Berenfeld O, Jalife J, Bergfeldt L. Reentry in an accessory atrioventricular pathway as a trigger for atrial fibrillation initiation in manifest Wolff-Parkinson-White syndrome: A matter of reflection?. Heart Rhythm 2008; 5:1238-47.

Centurion OA, Isomoto S, Konoe A, Shimizu A, Hayano M, Yano K. Electrophysiologic demonstration of anterograde fast and slow pathways within the His bundle in patients with normal intraventricular conduction. Intern J Cardiol 1994; 44:251-60.

Centurion OA, Kaibara M, Isomoto S, Konoe A, Yano K. Unmasking of fast and slow atrioventricular nodal pathways by successful radiofrequency ablation of two accessory atrioventricular connections. Clin Cardiol 1996; 20:75-8.

Barold SS. Malignant atrial fibrillation in the Wolff-Parkinson-White syndrome. Cardiol J 2007; 14:95-6.

Thanavaro JL, Thanavaro S. Clinical presentation and treatment of atrial fibrillation in Wolff´Parkinson-White syndrome. Heart Lung 2010; 39:131-6.

Shapira AR. Catheter ablation of supraventricular arrhythmias and atrial fibrillation. Am Fam Physician 2009; 80:1089-94. 59. Chang SL, Tai CT, Lin YJ, Lo LW, Tuan TC, Udyavar AR, et al. Electrophysiological characteristics and catheter ablation in patients with paroxysmal supraventricular tachycardias and paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 2008; 19:367-73.

Marine JE. Catheter ablation therapy for supraventricular arrhythmias. JAMA 2007; 298:2768-78.

Cagli KE, Topaloglu S, Aras D, Sen N, Akpinar I, Durak A, Kisacik HL. Evaluation of atrial vulnerability immediately after radiofrequency catheter ablation of accessory pathway in patients with Wolff-Parkinson-White syndrome. J Interv Card Electrophysiol 2009;26:217-24.

Kose S, Amasyali B, Aytemir K, Can I, Kilic A, Kursaklioglu H, Iyisoy A, Isik E. Radiofrequency catheter ablation of accessory pathways during pre-excited atrial fibrillation: Acute success rate and long-term clinical follow-up results as compared to those patients undergoing successful catheter ablation during synus rhythm. Heart Vessels 2005; 20:142-6.

Centurión OA, Isomoto S, Hayano M, Yano K. Evidence of quadruple anterograde atrioventricular nodal pathways in a patient with atrioventricular node reentry. J Electrocardiology 1994; 27:71-8

Descargas

Publicado

2012-12-01

Cómo citar

Centurión, O. A. (2012). Vulnerabilidad intrínseca del miocardio auricular como mecanismo de génesis de fibrilación auricular en el síndrome de Wolff-Parkinson-White. Memorias Del Instituto De Investigaciones En Ciencias De La Salud, 10(2). Recuperado a partir de https://revistascientificas.una.py/index.php/RIIC/article/view/1733

Número

Sección

Artículo de revisión

Artículos similares

1 2 3 4 5 6 7 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a

1 2 > >>