The «Abominable Mystery of Darwin»: A Review of the Origins and Evolution of Angiosperms

Authors

DOI:

https://doi.org/10.56152/StevianaFacenV17N1A3_2025

Keywords:

Flower evolution, Fossil record, Phylogeny, Reproductive tissues

Abstract

Flowering plants, also known as angiosperms  constitute the main component of most terrestrial
ecosystems, currently representing more than 95% of vascular plants. Their morphological, functional,
and ecological diversity has made them the dominant living plant group, with more than 290.000 species described. The origin of angiosperms was considered an enigma that Charles Darwin called an“abominable mystery.” In recent decades, the study of flower evolution has experienced advances and changes in perspective resulting from phylogenetic research and the analysis of molecular data. In this work, a review was carried out of the latest advances on the Jurassic gap and the fossil record, the modern flower, its components, and its relationship with the ancestral flower of angiosperms, as well as the latest hypotheses on the origin of the reproductive tissues’ characteristics of flowers.

Downloads

Download data is not yet available.

References

Asar, Yasmin, Simon Y.W. Ho, and Hervé Sauquet. "Early diversifications of angiosperms and their insect pollinators: were they unlinked?" Trends in Plant Science, 2022: 858-869.

Becker, A. (2020). A molecular update on the origin of the carpel. Current Opinion in Plant Biology, 53, 15–22. https://doi.org/10.1016/j.pbi.2019.08.009

Bernhardt, P., Sage, T., Weston, P., Azuma, H., Lam, M., Thien, L. B., & Bruhl, J. (2003). The pollination of Trimenia moorei (Trimeniaceae): Floral volatiles, insect/wind pollen vectors and stigmatic self-incompatibility in a basal angiosperm. Annals of Botany, 92(3), 445–458. https://doi.org/10.1093/aob/mcg157

Carvalho, M. de A., Lana, C. C., Bengtson, P., & Sa, N. de P. (2017). Late Aptian (Cretaceous) climate changes in northeastern Brazil: A reconstruction based on indicator species analysis (IndVal). Palaeogeography Palaeoclimatology Palaeoecology, 485, 543–560. https://doi.org/10.1016/j.palaeo.2017.07.011

Coiro, M., Doyle, J. A., & Hilton, J. (2019). How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytologist, 223(1), 83–99. https://doi.org/10.1111/nph.15708

de Boer, H. J., Eppinga, M. B., Wassen, M. J., & Dekker, S. C. (2012). A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nature Communications, 3(1), 1221. https://doi.org/10.1038/ncomms2217

De-Paula, O. C., Assis, L. C. S., & Craene, L. P. R. de. (2018). Unbuttoning the Ancestral Flower of Angiosperms. Trends in Plant Science, 23(7), 551–554. https://doi.org/10.1016/j.tplants.2018.05.006

Doyle, J. A. (1999). The rise of angiosperms as seen in the African Cretaceous pollen record. In K. Heine, L. Scott, A. Cadman, & R. Verhoeven (Eds.), Palaeoecology of Africa and the Surrounding Islands, Vol. 26 (Vol. 26, pp. 3–29).

Doyle, James A. (2008). Integrating Molecular Phylogenetic and Paleobotanical Evidence on Origin of the Flower. International Journal of Plant Sciences, 169(7), 816–843. https://doi.org/10.1086/589887

Doyle, James A. (2012). Molecular and Fossil Evidence on the Origin of Angiosperms. Annual Review of Earth and Planetary Sciences, 40(1), 301–326. https://doi.org/10.1146/annurev-earth-042711-105313

Doyle, James A., Jardiné, S., & Doerenkamp, A. (n.d.). Afropollis, a new genus of early angiosperm pollen, with notes of the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. Bulletin Des Centres de Recherches Exploration-Production Elf-Aquitaine, 6, 39–117.

Endress, P. K. (2011). Evolutionary diversification of the flowers in angiosperms. American Journal of Botany, 98(3), 370–396. https://doi.org/10.3732/ajb.1000299

Endress, P. K., & Doyle, J. A. (2007). Floral phyllotaxis in basal angiosperms: Development and evolution. Current Opinion in Plant Biology, 10(1), 52–57. https://doi.org/10.1016/j.pbi.2006.11.007

Endress, P. K., & Doyle, J. A. (2009). Reconstructing the ancestral angiosperm flower and its initial specializations. American Journal of Botany, 96(1), 22–66. https://doi.org/10.3732/ajb.0800047

Endress, P. K., & Doyle, J. A. (2015). Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. TAXON, 64(6), 1093–1116. https://doi.org/10.12705/646.1

Friis, E.M., K. Raunsgaard Pedersen, and P.R. Crane. "Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction." Palaeogeography, Palaeoclimatology, Palaeoecology. Volume 232, Issues 2–4., 2006: 251-293.

Frohlich, M. W. (2003). An evolutionary scenario for the origin of flowers. Nature Reviews Genetics, 4(7), 559–566. https://doi.org/10.1038/nrg1114

Frohlich, Michael W., & Chase, M. W. (2007). After a dozen years of progress the origin of angiosperms is still a great mystery. Nature, 450(7173), 1184–1189. https://doi.org/10.1038/nature06393

Group, T. A. P. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161(2), 105–121. https://doi.org/10.1111/j.1095-8339.2009.00996.x

Group, T. A. P., Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Soltis, D. E., Mabberley, D. J., Sennikov, A. N., Soltis, P. S., & Stevens, P. F. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1–20. https://doi.org/10.1111/boj.12385

Han, Lei, Ya Zhao, Ming Zhao, Jie Sun, Bainian Sun, and Xin Wang. 2023. "New Fossil Evidence Suggests That Angiosperms Flourished in the Middle Jurassic" Life 13, no. 3: 819. https://doi.org/10.3390/life13030819

Herendeen, P. S., Friis, E. M., Pedersen, K. R., & Crane, P. R. (2017). Palaeobotanical redux: Revisiting the age of the angiosperms. Nature Plants, 3(3), 1–8. https://doi.org/10.1038/nplants.2017.15

Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., Tomsho, L. P., Hu, Y., Liang, H., Soltis, P. S., Soltis, D. E., Clifton, S. W., Schlarbaum, S. E., Schuster, S. C., Ma, H., Leebens-Mack, J., & dePamphilis, C. W. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature, 473(7345), 97-U113. https://doi.org/10.1038/nature09916

Li, H.-T., Yi, T.-S., Gao, L.-M., Ma, P.-F., Zhang, T., Yang, J.-B., Gitzendanner, M. A., Fritsch, P. W., Cai, J., Luo, Y., Wang, H., van der Bank, M., Zhang, S.-D., Wang, Q.-F., Wang, J., Zhang, Z.-R., Fu, C.-N., Yang, J., Hollingsworth, P. M., … Li, D.-Z. (2019). Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants, 5(5), 461–470. https://doi.org/10.1038/s41477-019-0421-0

Mandel, J. R. (2019). A Jurassic leap for flowering plants. Nature Plants, 5(5), 455–456. https://doi.org/10.1038/s41477-019-0423-y

Povilus, R. A., DaCosta, J. M., Grassa, C., Satyaki, P. R. V., Moeglein, M., Jaenisch, J., Xi, Z., Mathews, S., Gehring, M., Davis, C. C., & Friedman, W. E. (2020). Water lily (Nymphaea thermarum) genome reveals variable genomic signatures of ancient vascular cambium losses. Proceedings of the National Academy of Sciences, 117(15), 8649–8656. https://doi.org/10.1073/pnas.1922873117

Project, A. G. (2013). The Amborella Genome and the Evolution of Flowering Plants. Science, 342(6165). https://doi.org/10.1126/science.1241089

Ramírez-Barahona, S., Sauquet, H., & Magallón, S. (2020). The delayed and geographically heterogeneous diversification of flowering plant families. Nature Ecology & Evolution, 1–7. https://doi.org/10.1038/s41559-020-1241-3

Reyes, E., Nadot, S., von Balthazar, M., Schönenberger, J., & Sauquet, H. (2018). Testing the impact of morphological rate heterogeneity on ancestral state reconstruction of five floral traits in angiosperms. Scientific Reports, 8(1), 9473. https://doi.org/10.1038/s41598-018-27750-1

Reyes-Olalde, J. I., Zúñiga-Mayo, V. M., Marsch-Martínez, N., & Folter, S. de. (2017). Synergistic relationship between auxin and cytokinin in the ovary and the participation of the transcription factor SPATULA. Plant Signaling & Behavior, 12(10), e1376158. https://doi.org/10.1080/15592324.2017.1376158

Reyes-Olalde, J. I., Zuñiga-Mayo, V. M., Montes, R. A. C., Marsch-Martínez, N., & Folter, S. de. (2013). Inside the gynoecium: At the carpel margin. Trends in Plant Science, 18(11), 644–655. https://doi.org/10.1016/j.tplants.2013.08.002

Rümpler, F., & Theißen, G. (2019). Reconstructing the ancestral flower of extant angiosperms: The ‘war of the whorls’ is heating up. Journal of Experimental Botany, 70(10), 2615–2622. https://doi.org/10.1093/jxb/erz106

Salomo, K., Smith, J. F., Feild, T. S., Samain, M.-S., Bond, L., Davidson, C., Zimmers, J., Neinhuis, C., & Wanke, S. (2017). The Emergence of Earliest Angiosperms may be Earlier than Fossil Evidence Indicates. Systematic Botany, 42(4), 607–619. https://doi.org/10.1600/036364417X696438

Sauquet, H., Balthazar, M. von, Magallón, S., Doyle, J. A., Endress, P. K., Bailes, E. J., Morais, E. B. de, Bull-Hereñu, K., Carrive, L., Chartier, M., Chomicki, G., Coiro, M., Cornette, R., Ottra, J. H. L. E., Epicoco, C., Foster, C. S. P., Jabbour, F., Haevermans, A., Haevermans, T., … Schönenberger, J. (2017). The ancestral flower of angiosperms and its early diversification. Nature Communications, 8(1), 1–10. https://doi.org/10.1038/ncomms16047

Stephens, R.E., Gallagher, R.V., Dun, L., Cornwell, W. and Sauquet, H. (2023), Insect pollination for most of angiosperm evolutionary history. New Phytol, 240: 880-891. https://doi.org/10.1111/nph.18993

Schonenberger, J. (2005). Rise from the ashes—The reconstruction of charcoal fossil flowers. Trends in Plant Science, 10(9), 436–443. https://doi.org/10.1016/j.tplants.2005.07.006

Scutt, Charles P. (2018). The Origin of Angiosperms. In L. Nuno de la Rosa & G. Müller (Eds.), Evolutionary Developmental Biology: A Reference Guide (pp. 1–20). Springer International Publishing. https://doi.org/10.1007/978-3-319-33038-9_60-1

Scutt, Charlie P., Vinauger-Douard, M., Fourquin, C., Finet, C., & Dumas, C. (2006). An evolutionary perspective on the regulation of carpel development. Journal of Experimental Botany, 57(10), 2143–2152. https://doi.org/10.1093/jxb/erj188

Smith, S. A., Beaulieu, J. M., & Donoghue, M. J. (2010). An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proceedings of the National Academy of Sciences, 107(13), 5897–5902. https://doi.org/10.1073/pnas.1001225107

Sokoloff, D. D., Remizowa, M. V., Bateman, R. M., & Rudall, P. J. (2018). Was the ancestral angiosperm flower whorled throughout? American Journal of Botany, 105(1), 5–15. https://doi.org/10.1002/ajb2.1003

Soltis, Douglas E., a Charles D. Bell, Sangtae Kim, and and Pamela S. Soltis. "Origin and Early Evolution of Angiosperms." Annals of the New York Academy of Sciences, 2008: 25.

Taylor, D. W., Li, H. Q., Dahl, J., Fago, F. J., Zinniker, D., & Moldowan, J. M. (2006). Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils. Paleobiology, 32(2), 179–190. https://doi.org/10.1666/0094-8373(2006)32[179:BEFTPO]2.0.CO;2

Theissen, G., & Saedler, H. (2001). Plant biology—Floral quartets. Nature, 409(6819), 469–471. https://doi.org/10.1038/35054172

Thien, L., White, D., & Yatsu, L. (1983). The reproductive-biology of a relict illicium-Floridanum ellis. American Journal of Botany, 70(5), 719–727. https://doi.org/10.2307/2443126

Thomson, B., & Wellmer, F. (2019). Chapter Eight—Molecular regulation of flower development. In U. Grossniklaus (Ed.), Current Topics in Developmental Biology (Vol. 131, pp. 185–210). Academic Press. https://doi.org/10.1016/bs.ctdb.2018.11.007

Vea, I. M., & Grimaldi, D. A. (2016). Putting scales into evolutionary time: The divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts. Scientific Reports, 6(1), 23487. https://doi.org/10.1038/srep23487

von Balthazar, M., Pedersen, K. R., Crane, P. R., Stampanoni, M., & Friis, E. M. (2007). Potomacanthus lobatus gen. Et sp nov., a new flower of probable Lauraceae from the Early Cretaceous (Early to Middle Albian) of eastern North America. American Journal of Botany, 94(12), 2041–2053. https://doi.org/10.3732/ajb.94.12.2041

Wang, Y.-Q., Melzer, R., & Theißen, G. (2010). Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of ‘floral quartets.’ The Plant Journal, 64(2), 177–190. https://doi.org/10.1111/j.1365-313X.2010.04325.x

Zeng, L., Zhang, Q., Sun, R., Kong, H., Zhang, N., & Ma, H. (2014). Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nature Communications, 5(1), 4956. https://doi.org/10.1038/ncomms5956

Published

2025-07-18

Issue

Section

Revisiones (Reviews)

How to Cite

The «Abominable Mystery of Darwin»: A Review of the Origins and Evolution of Angiosperms. (2025). Steviana , 17(1), 21-35. https://doi.org/10.56152/StevianaFacenV17N1A3_2025

Similar Articles

1-10 of 118

You may also start an advanced similarity search for this article.