Detección in silico de fitomoléculas con potenciales actividades inhibitorias de Nucleolinas (NCL)

Autores/as

  • Sebastián Giménez Vera Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biología. Laboratorio de Genética, San Lorenzo, Paraguay https://orcid.org/0009-0005-8728-8098
  • Elvio Gayozo Melgarejo Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biología. Laboratorio de Mutagénesis, Carcinogénesis y Teratogénesis Ambiental, San Lorenzo, Paraguay https://orcid.org/0000-0001-9309-7056
  • Luis Marín Insfran Universidad Nacional de Asunción. Facultad de Ciencias Exactas y Naturales. Departamento de Biología. Laboratorio de Mutagénesis, Carcinogénesis y Teratogénesis Ambiental. https://orcid.org/0000-0001-8468-8225

DOI:

https://doi.org/10.56152/StevianaFacenV14N1A2_2022

Palabras clave:

Acoplamiento molecular, Fitomoléculas, Inhibidores, Nucleolina

Resumen

Las nucleolinas son proteínas localizadas generalmente en el núcleo celular, citoplasma y la superficie de las membranas cumpliendo funciones imprescindibles para la fisiología celular. Sin embargo, su mal funcionamiento se encuentra íntimamente relacionado con muchos tipos de cáncer, por lo que pueden ser consideradas como proteínas dianas para la búsqueda de moléculas con potencial inhibitorio con la finalidad de desarrollar nuevas estrategias para combatir al cáncer. Esta investigación tuvo como objetivos detectar fitoconstituyentes que presenten afinidades de interacción por el dominio de unión al ARN (DUA) de las nucleolinas y caracterizar dichas interacciones proteína-ligando mediante el análisis del acoplamiento molecular. Se preseleccionaron quince fitomoléculas con diferentes actividades biológicas para su estudio y se determinó el índice de drogabilidad del dominio DUA de las nucleolinas, las cuales presentaron un valor de 0,80 siendo altamente drogable. Posteriormente, se realizaron las pruebas de acoplamiento molecular entre los fitoconstituyentes seleccionados y la nucleolina. Los datos obtenidos en los ensayos de acoplamiento molecular evidenciaron que los fitoconstituyentes que presentaron mayor afinidad de interacción in silico fueron los triterpenos Maytenina, Taraxerol, Cucurbitacina B y Pristimerina, los cuales demostraron valores de energías libre de interacción (ΔG) iguales a -10,80±0,03 kcal.mol-1, -10,58±0,14 kcal.mol-1, -9,58±0,12 kcal.mol-1 y -9,48±0,35 kcal.mol-1 respectivamente. Los residuos involucrados activamente en las interacciones con las biomoléculas estabilizando la formación de la estructura de los complejos proteína-ligando fueron Asn100, Tyr103, Tyr134 y Arg158. Los hallazgos sugieren que dichos triterpenos podrían actuar como potenciales inhibidores de las nucleolinas debido a las afinidades manifestadas, sin embargo, estos resultados necesitan ser confirmados mediante ensayos in vitro e in vivo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdelmohsen, K., & Gorospe, M. (2012). RNA-binding protein nucleolin in disease. RNA Biology, 9(6), 799–808. https://doi.org/10.4161/rna.19718

Akhtar, M. S., & Swamy, M. K. (2018). Anticancer plants: Properties and application. In Anticancer plants: Properties and Application (Vol. 1). https://doi.org/10.1007/978-981-10-8548-2

Anwar, T., Kumar, P., & Khan, A. U. (2021). Modern Tools and Techniques in Computer-Aided Drug Design. In Molecular Docking for Computer-Aided Drug Design (pp. 1–30). Elsevier. https://doi.org/10.1016/B978-0-12-822312-3.00011-4

Arumugam, S., Clarke Miller, M., Maliekal, J., Bates, P. J., Trent, J. O., & Lane, A. N. (2010). Solution structure of the RBD1,2 domains from human nucleolin. Journal of Biomolecular NMR, 47(1), 79–83. https://doi.org/10.1007/s10858-010-9412-1

Baig, M. H., Ahmad, K., Rabbani, G., Danishuddin, M., & Choi, I. (2018). Computer Aided Drug Design and its Application to the Development of Potential Drugs for Neurodegenerative Disorders. Current Neuropharmacology, 16(6), 740–748. https://doi.org/10.2174/1570159X15666171016163510

Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., & Weissig, H. (2000). The Protein Data Bank. Nucleic Acids Res, 28(1), 235–242.

Bulusu, G., & Desiraju, G. R. (2020). Strong and Weak Hydrogen Bonds in Protein–Ligand Recognition. Journal of the Indian Institute of Science, 100(1), 31–41. https://doi.org/10.1007/s41745-019-00141-9

Carvalho, L. S., Gonçalves, N., Fonseca, N. A., & Moreira, J. N. (2021). Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals, 14(60), 1–21. https://doi.org/10.3390/ph14010060

Cevatemre, B., Erkısa, M., Aztopal, N., Karakas, D., Alper, P., Tsimplouli, C., Sereti, E., Dimas, K., Armutak, E. I. I., Gurevin, E. G., Uvez, A., Mori, M., Berardozzi, S., Ingallina, C., D’Acquarica, I., Botta, B., Ozpolat, B., & Ulukaya, E. (2018). A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer. Pharmacological Research, 129, 500–514. https://doi.org/10.1016/j.phrs.2017.11.027

Chan, K. T., Li, K., Liu, S. L., Chu, K. H., Toh, M., & Xie, W. D. (2010). Cucurbitacin B inhibits STAT3 and the Raf/MEK/ERK pathway in leukemia cell line K562. Cancer Letters, 289(1), 46–52. https://doi.org/10.1016/j.canlet.2009.07.015

Chan, K. T., Meng, F. Y., Li, Q., Ho, C. Y., Lam, T. S., To, Y., Lee, W. H., Li, M., Chu, K. H., & Toh, M. (2010). Cucurbitacin B induces apoptosis and S phase cell cycle arrest in BEL-7402 human hepatocellular carcinoma cells and is effective via oral administration. Cancer Letters, 294(1), 118–124. https://doi.org/10.1016/j.canlet.2010.01.029

Chen, R.-Z., Yang, F., Zhang, M., Sun, Z.-G., & Zhang, N. (2021). Cellular and Molecular Mechanisms of Pristimerin in Cancer Therapy: Recent Advances. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.671548

Cheng, S., Zhang, Z., Hu, C., Xing, N., Xia, Y., & Pang, B. (2020). Pristimerin Suppressed Breast Cancer Progression via miR-542-5p/DUB3 Axis. OncoTargets and Therapy, Volume 13, 6651–6660. https://doi.org/10.2147/OTT.S257329

Dakeng, S., Duangmano, S., Jiratchariyakul, W., U-Pratya, Y., Bögler, O., & Patmasiriwat, P. (2012). Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: Reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated β-catenin to the nucleus. Journal of Cellular Biochemistry, 113(1), 49–60. https://doi.org/10.1002/jcb.23326

Dandawate, P., Subramaniam, D., Panovich, P., Standing, D., Krishnamachary, B., Kaushik, G., Thomas, S. M., Dhar, A., Weir, S. J., Jensen, R. A., & Anant, S. (2020). Cucurbitacin B and I inhibits colon cancer growth by targeting the Notch signaling pathway. Scientific Reports, 10(1), 1290. https://doi.org/10.1038/s41598-020-57940-9

Deeb, D., Gao, X., Liu, Y. B., Pindolia, K., & Gautam, S. (2014). Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-κB/mTOR signaling proteins and anti-apoptotic Bcl-2. International Journal of Oncology, 44(5), 1707–1715. https://doi.org/10.3892/ijo.2014.2325

Dittharot, K., Dakeng, S., Suebsakwong, P., Suksamrarn, A., Patmasiriwat, P., & Promkan, M. (2019). Cucurbitacin B Induces Hypermethylation of Oncogenes in Breast Cancer Cells. Planta Medica, 85(05), 370–378. https://doi.org/10.1055/a-0791-1591

Duangmano, S., Dakeng, S., Jiratchariyakul, W., Suksamrarn, A., Smith, D. R., & Patmasiriwat, P. (2010). Antiproliferative Effects of Cucurbitacin B in Breast Cancer Cells: Down-Regulation of the c-Myc/hTERT/Telomerase Pathway and Obstruction of the Cell Cycle. International Journal of Molecular Sciences, 11(12), 5323–5338. https://doi.org/10.3390/ijms11125323

Duangmano, S., Sae-lim, P., Suksamrarn, A., Patmasiriwat, P., & Domann, F. E. (2012). Cucurbitacin B Causes Increased Radiation Sensitivity of Human Breast Cancer Cells via G2/M Cell Cycle Arrest. Journal of Oncology, 2012, 1–8. https://doi.org/10.1155/2012/601682

Ferreira de Freitas, R., & Schapira, M. (2017). A systematic analysis of atomic protein–ligand interactions in the PDB. MedChemComm, 8(10), 1970–1981. https://doi.org/10.1039/C7MD00381A

Fricker, P., Gastreich, M., & Rarey, M. (2004). Automated Generation of Structural Molecular Formulas under Constraints. Journal of Chemical Information and Computer Sciences, 44, 1065–1078.

Gao, Y., Islam, M. S., Tian, J., Lui, V. W. Y., & Xiao, D. (2014). Inactivation of ATP citrate lyase by Cucurbitacin B: A bioactive compound from cucumber, inhibits prostate cancer growth. Cancer Letters, 349(1), 15–25. https://doi.org/10.1016/j.canlet.2014.03.015

Gill, B. S., Kumar, S., & Navgeet. (2016). Triterpenes in cancer: significance and their influence. Molecular Biology Reports, 43(9), 881–896. https://doi.org/10.1007/s11033-016-4032-9

Guedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2013). Receptor-ligand molecular docking. Biophysical Reviews, 6(1), 75–87. https://doi.org/10.1007/s12551-013-0130-2

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST : Paleontological Statistics Software Package for Education and Data Analysis. Paleontologia Electronica, 4(1), 9.

Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 1–17.

Hernandes, C., Miguita, L., de Sales, R. O., Silva, E. de P., Mendonça, P. O. R. de, Lorencini da Silva, B., Klingbeil, M. de F. G., Mathor, M. B., Rangel, E. B., Marti, L. C., Coppede, J. da S., Nunes, F. D., Pereira, A. M. S., & Severino, P. (2020). Anticancer Activities of the Quinone-Methide Triterpenes Maytenin and 22-β-hydroxymaytenin Obtained from Cultivated Maytenus ilicifolia Roots Associated with Down-Regulation of miRNA-27a and miR-20a/miR-17-5p. Molecules, 25(3), 760. https://doi.org/10.3390/molecules25030760

Hong, J. F., Song, Y. F., Liu, Z., Zheng, Z. C., Chen, H. J., & Wang, S. S. (2016). Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration. Molecular Medicine Reports, 13(6), 4541–4548. https://doi.org/10.3892/mmr.2016.5105

Irvine, J. E., & Freyre, R. H. (1959). Source Materials for Rotenone, Occurrence of Rotenoids in Some Species of the Genus Tephrosia. Journal of Agricultural and Food Chemistry, 7(2), 106–107. https://doi.org/10.1021/jf60096a002

Iwanski, G. B., Lee, D. H., En-Gal, S., Doan, N. B., Castor, B., Vogt, M., Toh, M., Bokemeyer, C., Said, J. W., Thoennissen, N. H., & Koeffler, H. P. (2010). Cucurbitacin B, a novel in vivo potentiator of gemcitabine with low toxicity in the treatment of pancreatic cancer. British Journal of Pharmacology, 160(4), 998–1007. https://doi.org/10.1111/j.1476-5381.2010.00741.x

Jäger, S., Trojan, H., Kopp, T., Laszczyk, M. N., & Scheffler, A. (2009). Pentacyclic triterpene distribution in various plants - rich sources for a new group of multi-potent plant extracts. Molecules, 14(6), 2016–2031. https://doi.org/10.3390/molecules14062016

Kacprzak, M. K. (2013). Chemistry and Biology of Cinchona Alkaloids. In K. G. Ramawat & J. M. Mérillon (Eds.), Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes (pp. 1–4242). https://doi.org/10.1007/978-3-642-22144-6

Kaufman, P. B., Duke, J. A., Brielmann, H., Boik, J., & Hoyt, J. E. (1997). A Comparative Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and Daidzein: Implications for Human Nutrition and Health. The Journal of Alternative and Complementary Medicine, 3(1), 7–12. https://doi.org/10.1089/acm.1997.3.7

Kim, S., Thiessen, P. A., Bolton, E., Chen, J., Fu, G., & Gindulyte, A. (2016). PubChem Substance and Compound databases. Nucleic Acids Res, 1, 1202–1213.

Lee, J. S., Yoon, I. S., Lee, M. S., Cha, E. Y., Thuong, P. T., Diep, T. T., & Kim, J. R. (2013). Anticancer Activity of Pristimerin in Epidermal Growth Factor Receptor 2-Positive SKBR3 Human Breast Cancer Cells. Biological and Pharmaceutical Bulletin, 36(2), 316–325. https://doi.org/10.1248/bpb.b12-00685

Lee, S.-O., Kim, J.-S., Lee, M.-S., & Lee, H.-J. (2016). Anti-cancer effect of pristimerin by inhibition of HIF-1α involves the SPHK-1 pathway in hypoxic prostate cancer cells. BMC Cancer, 16(1), 701. https://doi.org/10.1186/s12885-016-2730-2

Li, J., Guo, Q., Lei, X., Zhang, L., Su, C., Liu, Y., Zhou, W., Chen, H., Wang, H., Wang, F., Yan, Y., & Zhang, J. (2020). Pristimerin induces apoptosis and inhibits proliferation, migration in H1299 Lung Cancer Cells. Journal of Cancer, 11(21), 6348–6355. https://doi.org/10.7150/jca.44431

Liao, J., Wu, F., Lin, W., & Huang, Z. (2018). Taraxerol exerts potent anticancer effects via induction of apoptosis and inhibition of Nf-Kb signalling pathway in human middle ear epithelial cholesteatoma cells. Tropical Journal of Pharmaceutical Research, 17(6), 1011–1017. https://doi.org/10.4314/tjpr.v17i6.5

Liu, T., Peng, H., Zhang, M., Deng, Y., & Wu, Z. (2010). Cucurbitacin B, a small molecule inhibitor of the Stat3 signaling pathway, enhances the chemosensitivity of laryngeal squamous cell carcinoma cells to cisplatin. European Journal of Pharmacology, 641(1), 15–22. https://doi.org/10.1016/j.ejphar.2010.04.062

Lu, P., Yu, B., & Xu, J. (2012). Cucurbitacin B Regulates Immature Myeloid Cell Differentiation and Enhances Antitumor Immunity in Patients with Lung Cancer. Cancer Biotherapy and Radiopharmaceuticals, 27(8), 495–503. https://doi.org/10.1089/cbr.2012.1219

Mu, X.-M., Shi, W., Sun, L.-X., Li, H., Wang, Y.-R., Jiang, Z.-Z., & Zhang, L.-Y. (2012). Pristimerin Inhibits Breast Cancer Cell Migration by Up-regulating Regulator of G Protein Signaling 4 Expression. Asian Pacific Journal of Cancer Prevention, 13(4), 1097–1104. https://doi.org/10.7314/APJCP.2012.13.4.1097

Oberlies, N. H., Burgess, J. P., Navarro, H. A., Pinos, R. E., Soejarto, D. D., Farnsworth, N. R., Kinghorn, A. D., Wani, M. C., & Wall, M. E. (2001). Bioactive Constituents of the Roots of Licania i ntrapetiolaris. Journal of Natural Products, 64(4), 497–501. https://doi.org/10.1021/np0005006

Park, J.-H., & Kim, J.-K. (2018). Pristimerin, a naturally occurring triterpenoid, attenuates tumorigenesis in experimental colitis-associated colon cancer. Phytomedicine, 42, 164–171. https://doi.org/10.1016/j.phymed.2018.03.033

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.

Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, 30(1), 70–82. https://doi.org/10.1002/pro.3943

Ren, G., Sha, T., Guo, J., Li, W., Lu, J., & Chen, X. (2015). Cucurbitacin B induces DNA damage and autophagy mediated by reactive oxygen species (ROS) in MCF-7 breast cancer cells. Journal of Natural Medicines, 69(4), 522–530. https://doi.org/10.1007/s11418-015-0918-4

Ringuelet, J., & Viña, S. (2013). Productos Naturales Vegetales (1a ed.). Universidad Nacional de la Plata.

Sinha, S., Khan, S., Shukla, S., Lakra, A. D., Kumar, S., Das, G., Maurya, R., & Meeran, S. M. (2016). Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis. The International Journal of Biochemistry & Cell Biology, 77, 41–56. https://doi.org/10.1016/j.biocel.2016.05.014

Stierand, K., Maaß, P., & Rarey, M. (2006). Complexes at a Glance: Automated Generation of two-dimensional Complex Diagrams. Molecular Bioinformatics, 22, 1710–1716.

Suárez, A. I., Chavez, K., Mateu, E., Compagnone, R. S., Muñoz, A., Sojo, F., Arvelo, F., Mijares, M., & De Sanctis, J. B. (2009). Cytotoxic Activity of seco -Entkaurenes from Croton caracasana on Human Cancer Cell Lines. Natural Product Communications, 4(11), 1934578X0900401. https://doi.org/10.1177/1934578X0900401117

Surapaneni, S. (2019). Apoptosis of LNCaP and PC-3 cell lines and testosterone-induced prostate cancer by taraxerol and reticulatacin isolated from Annona reticulata l. (Vol. 1, Issue 1). ABMRCP.

Tajrishi, M. M., Tuteja, R., & Tuteja, N. (2011). Nucleolin: The most abundant multifunctional phosphoprotein of nucleolus. Communicative and Integrative Biology, 4(3), 267–275. https://doi.org/10.4161/cib.4.3.14884

Takasaki, M., Konoshima, T., Tokuda, H., Masuda, K., Arai, Y., Shiojima, K., & Ageta, H. (1999). Anti-carcinogenic Activiti of Taraxacum Plant. II. Chemical Pharmaceutical Bulletin, 22(6), 606–610.

Tallamy, D. W., Hibbard, B. E., Clark, T. L., & Gillespie, J. J. (2005). Western Corn Rootworm, Cucurbits and Cucurbitacins Purported Origin of Western Corn Rootworm. In S. Vidal, B. E. Hibbard, T. L. Clark, & J. J. Gillespie (Eds.), Western Corn Rootworm: Ecology and Management (pp. 67–94). CAB Internarional.

Tan, B. (2011). Effects of taraxerol and taraxeryl acetate on cell cycle and apoptosis of human gastric epithelial cell line AGS. Journal of Chinese Integrative Medicine, 9(6), 638–642. https://doi.org/10.3736/jcim20110610

Thoennissen, N. H., Iwanski, G. B., Doan, N. B., Okamoto, R., Lin, P., Abbassi, S., Song, J. H., Yin, D., Toh, M., Xie, W. D., Said, J. W., & Koeffler, H. P. (2009). Cucurbitacin B Induces Apoptosis by Inhibition of the JAK/STAT Pathway and Potentiates Antiproliferative Effects of Gemcitabine on Pancreatic Cancer Cells. Cancer Research, 69(14), 5876–5884. https://doi.org/10.1158/0008-5472.CAN-09-0536

Thomas, C. M., Wood, R. C., Wyatt, J. E., Pendleton, M. H., Torrenegra, R. D., Rodriguez, O. E., Harirforoosh, S., Ballester, M., Lightner, J., Krishnan, K., & Ramsauer, V. P. (2012). Anti-neoplastic activity of two flavone isomers derived from Gnaphalium elegans and achyrocline bogotensis. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0039806

Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334

Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F., & Rarey, M. (2012). Combining global and local measures for structure-based druggability predictions. . . J. Chem. Inf. Model., 52, 360–372.

Wang, Y., Zhou, Y., Zhou, H., Jia, G., Liu, J., Han, B., Cheng, Z., Jiang, H., Pan, S., & Sun, B. (2012). Pristimerin Causes G1 Arrest, Induces Apoptosis, and Enhances the Chemosensitivity to Gemcitabine in Pancreatic Cancer Cells. PLoS ONE, 7(8), e43826. https://doi.org/10.1371/journal.pone.0043826

Wink, M. (2015). Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines, 2, 251–286. https://doi.org/10.3390/medicines2030251

Yang, H., Landis-Piwowar, K. R., Lu, D., Yuan, P., Li, L., Reddy, G. P.-V., Yuan, X., & Dou, Q. P. (2008). Pristimerin induces apoptosis by targeting the proteasome in prostate cancer cells. Journal of Cellular Biochemistry, 103(1), 234–244. https://doi.org/10.1002/jcb.21399

Yao, X., Lu, B., Lü, C., Bai, Q., Yan, D., & Xu, H. (2017). Taraxerol Induces Cell Apoptosis through A Mitochondria-Mediated Pathway in HeLa Cells. Cell Journal, 19(3), 512–519. https://doi.org/10.22074/cellj.2017.4543.

Yin, M. C. (2012). Anti-glycative potential of triterpenes: A mini-review. In BioMedicine (Netherlands) (Vol. 2, Issue 1, pp. 2–9). No longer published by Elsevier. https://doi.org/10.1016/j.biomed.2011.12.001

Yousef, B. A., Hassan, H. M., Guerram, M., Hamdi, A. M., Wang, B., Zhang, L.-Y., & Jiang, Z.-Z. (2016). Pristimerin inhibits proliferation, migration and invasion, and induces apoptosis in HCT-116 colorectal cancer cells. Biomedicine & Pharmacotherapy, 79, 112–119. https://doi.org/10.1016/j.biopha.2016.02.003

Zafar, R., & Sharma, K. (2015). Occurrence of taraxerol and taraxasterol in medicinal plants. Pharmacognosy Reviews, 9(17), 19. https://doi.org/10.4103/0973-7847.156317

Zhao, Q., Bi, Y., Guo, J., Liu, Y., Zhong, J., Liu, Y., Pan, L., Guo, Y., Tan, Y., & Yu, X. (2021). Effect of pristimerin on apoptosis through activation of ROS/ endoplasmic reticulum (ER) stress-mediated noxa in colorectal cancer. Phytomedicine, 80, 153399. https://doi.org/10.1016/j.phymed.2020.153399

Zhao, Q., Liu, Y., Zhong, J., Bi, Y., Liu, Y., Ren, Z., Li, X., Jia, J., Yu, M., & Yu, X. (2019). Pristimerin induces apoptosis and autophagy via activation of ROS/ASK1/JNK pathway in human breast cancer in vitro and in vivo. Cell Death Discovery, 5(1), 125. https://doi.org/10.1038/s41420-019-0208-0

Zhou, J., Liu, M., Chen, Y., Xu, S., Guo, Y., & Zhao, L. (2019). Cucurbitacin B suppresses proliferation of pancreatic cancer cells by ceRNA: Effect of miR-146b-5p and lncRNA-AFAP1-AS1. Journal of Cellular Physiology, 234(4), 4655–4667. https://doi.org/10.1002/jcp.27264

Descargas

Publicado

02.06.2023

Cómo citar

Giménez Vera, S., Gayozo Melgarejo, E., & Marín Insfran, L. (2023). Detección in silico de fitomoléculas con potenciales actividades inhibitorias de Nucleolinas (NCL). Steviana , 14(1), 18–33. https://doi.org/10.56152/StevianaFacenV14N1A2_2022

Número

Sección

Artículos Originales de Biotecnología

Artículos similares

También puede {advancedSearchLink} para este artículo.