El «Abominable misterio de Darwin»: una revisión en los avances del origen y evolución de las angiospermas

Autores/as

DOI:

https://doi.org/10.56152/StevianaFacenV17N1A3_2025

Palabras clave:

Palabras clave. Evolución de la flor, Investigación filogenética; Registro fósil; Tejidos reproductivos.

Resumen

Las plantas con flores, también conocidas como Angiospermas, constituyen el principal componente de la mayoría de los ecosistemas terrestres, representando más del 95% de las plantas vasculares actuales. Su diversidad morfológica, funcional y ecológica las ha convertido en el grupo dominante de plantas vivas, con más de 290,000 especies descritas. El origen de las angiospermas fue considerado un enigma al que Charles Darwin se refirió como un “abominable misterio”. En las últimas décadas, el estudio de la evolución de las flores ha tenido avances y cambios de perspectiva debido a la investigación filogenética y al análisis de datos moleculares. En este trabajo se realiza un reciento de últimos avances sobre la brecha jurásica y el registro fósil, la flor moderna, sus componentes y su relación con la flor ancestral de las angiospermas, así como hipótesis más recientes sobre el origen de los tejidos reproductivos característicos de las flores.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Asar, Yasmin, Simon Y.W. Ho, and Hervé Sauquet. "Early diversifications of angiosperms and their insect pollinators: were they unlinked?" Trends in Plant Science, 2022: 858-869.

Becker, A. (2020). A molecular update on the origin of the carpel. Current Opinion in Plant Biology, 53, 15–22. https://doi.org/10.1016/j.pbi.2019.08.009

Bernhardt, P., Sage, T., Weston, P., Azuma, H., Lam, M., Thien, L. B., & Bruhl, J. (2003). The pollination of Trimenia moorei (Trimeniaceae): Floral volatiles, insect/wind pollen vectors and stigmatic self-incompatibility in a basal angiosperm. Annals of Botany, 92(3), 445–458. https://doi.org/10.1093/aob/mcg157

Carvalho, M. de A., Lana, C. C., Bengtson, P., & Sa, N. de P. (2017). Late Aptian (Cretaceous) climate changes in northeastern Brazil: A reconstruction based on indicator species analysis (IndVal). Palaeogeography Palaeoclimatology Palaeoecology, 485, 543–560. https://doi.org/10.1016/j.palaeo.2017.07.011

Coiro, M., Doyle, J. A., & Hilton, J. (2019). How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytologist, 223(1), 83–99. https://doi.org/10.1111/nph.15708

de Boer, H. J., Eppinga, M. B., Wassen, M. J., & Dekker, S. C. (2012). A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nature Communications, 3(1), 1221. https://doi.org/10.1038/ncomms2217

De-Paula, O. C., Assis, L. C. S., & Craene, L. P. R. de. (2018). Unbuttoning the Ancestral Flower of Angiosperms. Trends in Plant Science, 23(7), 551–554. https://doi.org/10.1016/j.tplants.2018.05.006

Doyle, J. A. (1999). The rise of angiosperms as seen in the African Cretaceous pollen record. In K. Heine, L. Scott, A. Cadman, & R. Verhoeven (Eds.), Palaeoecology of Africa and the Surrounding Islands, Vol. 26 (Vol. 26, pp. 3–29).

Doyle, James A. (2008). Integrating Molecular Phylogenetic and Paleobotanical Evidence on Origin of the Flower. International Journal of Plant Sciences, 169(7), 816–843. https://doi.org/10.1086/589887

Doyle, James A. (2012). Molecular and Fossil Evidence on the Origin of Angiosperms. Annual Review of Earth and Planetary Sciences, 40(1), 301–326. https://doi.org/10.1146/annurev-earth-042711-105313

Doyle, James A., Jardiné, S., & Doerenkamp, A. (n.d.). Afropollis, a new genus of early angiosperm pollen, with notes of the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. Bulletin Des Centres de Recherches Exploration-Production Elf-Aquitaine, 6, 39–117.

Endress, P. K. (2011). Evolutionary diversification of the flowers in angiosperms. American Journal of Botany, 98(3), 370–396. https://doi.org/10.3732/ajb.1000299

Endress, P. K., & Doyle, J. A. (2007). Floral phyllotaxis in basal angiosperms: Development and evolution. Current Opinion in Plant Biology, 10(1), 52–57. https://doi.org/10.1016/j.pbi.2006.11.007

Endress, P. K., & Doyle, J. A. (2009). Reconstructing the ancestral angiosperm flower and its initial specializations. American Journal of Botany, 96(1), 22–66. https://doi.org/10.3732/ajb.0800047

Endress, P. K., & Doyle, J. A. (2015). Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. TAXON, 64(6), 1093–1116. https://doi.org/10.12705/646.1

Friis, E.M., K. Raunsgaard Pedersen, and P.R. Crane. "Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction." Palaeogeography, Palaeoclimatology, Palaeoecology. Volume 232, Issues 2–4., 2006: 251-293.

Frohlich, M. W. (2003). An evolutionary scenario for the origin of flowers. Nature Reviews Genetics, 4(7), 559–566. https://doi.org/10.1038/nrg1114

Frohlich, Michael W., & Chase, M. W. (2007). After a dozen years of progress the origin of angiosperms is still a great mystery. Nature, 450(7173), 1184–1189. https://doi.org/10.1038/nature06393

Group, T. A. P. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161(2), 105–121. https://doi.org/10.1111/j.1095-8339.2009.00996.x

Group, T. A. P., Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Soltis, D. E., Mabberley, D. J., Sennikov, A. N., Soltis, P. S., & Stevens, P. F. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1–20. https://doi.org/10.1111/boj.12385

Han, Lei, Ya Zhao, Ming Zhao, Jie Sun, Bainian Sun, and Xin Wang. 2023. "New Fossil Evidence Suggests That Angiosperms Flourished in the Middle Jurassic" Life 13, no. 3: 819. https://doi.org/10.3390/life13030819

Herendeen, P. S., Friis, E. M., Pedersen, K. R., & Crane, P. R. (2017). Palaeobotanical redux: Revisiting the age of the angiosperms. Nature Plants, 3(3), 1–8. https://doi.org/10.1038/nplants.2017.15

Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., Tomsho, L. P., Hu, Y., Liang, H., Soltis, P. S., Soltis, D. E., Clifton, S. W., Schlarbaum, S. E., Schuster, S. C., Ma, H., Leebens-Mack, J., & dePamphilis, C. W. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature, 473(7345), 97-U113. https://doi.org/10.1038/nature09916

Li, H.-T., Yi, T.-S., Gao, L.-M., Ma, P.-F., Zhang, T., Yang, J.-B., Gitzendanner, M. A., Fritsch, P. W., Cai, J., Luo, Y., Wang, H., van der Bank, M., Zhang, S.-D., Wang, Q.-F., Wang, J., Zhang, Z.-R., Fu, C.-N., Yang, J., Hollingsworth, P. M., … Li, D.-Z. (2019). Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants, 5(5), 461–470. https://doi.org/10.1038/s41477-019-0421-0

Mandel, J. R. (2019). A Jurassic leap for flowering plants. Nature Plants, 5(5), 455–456. https://doi.org/10.1038/s41477-019-0423-y

Povilus, R. A., DaCosta, J. M., Grassa, C., Satyaki, P. R. V., Moeglein, M., Jaenisch, J., Xi, Z., Mathews, S., Gehring, M., Davis, C. C., & Friedman, W. E. (2020). Water lily (Nymphaea thermarum) genome reveals variable genomic signatures of ancient vascular cambium losses. Proceedings of the National Academy of Sciences, 117(15), 8649–8656. https://doi.org/10.1073/pnas.1922873117

Project, A. G. (2013). The Amborella Genome and the Evolution of Flowering Plants. Science, 342(6165). https://doi.org/10.1126/science.1241089

Ramírez-Barahona, S., Sauquet, H., & Magallón, S. (2020). The delayed and geographically heterogeneous diversification of flowering plant families. Nature Ecology & Evolution, 1–7. https://doi.org/10.1038/s41559-020-1241-3

Reyes, E., Nadot, S., von Balthazar, M., Schönenberger, J., & Sauquet, H. (2018). Testing the impact of morphological rate heterogeneity on ancestral state reconstruction of five floral traits in angiosperms. Scientific Reports, 8(1), 9473. https://doi.org/10.1038/s41598-018-27750-1

Reyes-Olalde, J. I., Zúñiga-Mayo, V. M., Marsch-Martínez, N., & Folter, S. de. (2017). Synergistic relationship between auxin and cytokinin in the ovary and the participation of the transcription factor SPATULA. Plant Signaling & Behavior, 12(10), e1376158. https://doi.org/10.1080/15592324.2017.1376158

Reyes-Olalde, J. I., Zuñiga-Mayo, V. M., Montes, R. A. C., Marsch-Martínez, N., & Folter, S. de. (2013). Inside the gynoecium: At the carpel margin. Trends in Plant Science, 18(11), 644–655. https://doi.org/10.1016/j.tplants.2013.08.002

Rümpler, F., & Theißen, G. (2019). Reconstructing the ancestral flower of extant angiosperms: The ‘war of the whorls’ is heating up. Journal of Experimental Botany, 70(10), 2615–2622. https://doi.org/10.1093/jxb/erz106

Salomo, K., Smith, J. F., Feild, T. S., Samain, M.-S., Bond, L., Davidson, C., Zimmers, J., Neinhuis, C., & Wanke, S. (2017). The Emergence of Earliest Angiosperms may be Earlier than Fossil Evidence Indicates. Systematic Botany, 42(4), 607–619. https://doi.org/10.1600/036364417X696438

Sauquet, H., Balthazar, M. von, Magallón, S., Doyle, J. A., Endress, P. K., Bailes, E. J., Morais, E. B. de, Bull-Hereñu, K., Carrive, L., Chartier, M., Chomicki, G., Coiro, M., Cornette, R., Ottra, J. H. L. E., Epicoco, C., Foster, C. S. P., Jabbour, F., Haevermans, A., Haevermans, T., … Schönenberger, J. (2017). The ancestral flower of angiosperms and its early diversification. Nature Communications, 8(1), 1–10. https://doi.org/10.1038/ncomms16047

Stephens, R.E., Gallagher, R.V., Dun, L., Cornwell, W. and Sauquet, H. (2023), Insect pollination for most of angiosperm evolutionary history. New Phytol, 240: 880-891. https://doi.org/10.1111/nph.18993

Schonenberger, J. (2005). Rise from the ashes—The reconstruction of charcoal fossil flowers. Trends in Plant Science, 10(9), 436–443. https://doi.org/10.1016/j.tplants.2005.07.006

Scutt, Charles P. (2018). The Origin of Angiosperms. In L. Nuno de la Rosa & G. Müller (Eds.), Evolutionary Developmental Biology: A Reference Guide (pp. 1–20). Springer International Publishing. https://doi.org/10.1007/978-3-319-33038-9_60-1

Scutt, Charlie P., Vinauger-Douard, M., Fourquin, C., Finet, C., & Dumas, C. (2006). An evolutionary perspective on the regulation of carpel development. Journal of Experimental Botany, 57(10), 2143–2152. https://doi.org/10.1093/jxb/erj188

Smith, S. A., Beaulieu, J. M., & Donoghue, M. J. (2010). An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proceedings of the National Academy of Sciences, 107(13), 5897–5902. https://doi.org/10.1073/pnas.1001225107

Sokoloff, D. D., Remizowa, M. V., Bateman, R. M., & Rudall, P. J. (2018). Was the ancestral angiosperm flower whorled throughout? American Journal of Botany, 105(1), 5–15. https://doi.org/10.1002/ajb2.1003

Soltis, Douglas E., a Charles D. Bell, Sangtae Kim, and and Pamela S. Soltis. "Origin and Early Evolution of Angiosperms." Annals of the New York Academy of Sciences, 2008: 25.

Taylor, D. W., Li, H. Q., Dahl, J., Fago, F. J., Zinniker, D., & Moldowan, J. M. (2006). Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils. Paleobiology, 32(2), 179–190. https://doi.org/10.1666/0094-8373(2006)32[179:BEFTPO]2.0.CO;2

Theissen, G., & Saedler, H. (2001). Plant biology—Floral quartets. Nature, 409(6819), 469–471. https://doi.org/10.1038/35054172

Thien, L., White, D., & Yatsu, L. (1983). The reproductive-biology of a relict illicium-Floridanum ellis. American Journal of Botany, 70(5), 719–727. https://doi.org/10.2307/2443126

Thomson, B., & Wellmer, F. (2019). Chapter Eight—Molecular regulation of flower development. In U. Grossniklaus (Ed.), Current Topics in Developmental Biology (Vol. 131, pp. 185–210). Academic Press. https://doi.org/10.1016/bs.ctdb.2018.11.007

Vea, I. M., & Grimaldi, D. A. (2016). Putting scales into evolutionary time: The divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts. Scientific Reports, 6(1), 23487. https://doi.org/10.1038/srep23487

von Balthazar, M., Pedersen, K. R., Crane, P. R., Stampanoni, M., & Friis, E. M. (2007). Potomacanthus lobatus gen. Et sp nov., a new flower of probable Lauraceae from the Early Cretaceous (Early to Middle Albian) of eastern North America. American Journal of Botany, 94(12), 2041–2053. https://doi.org/10.3732/ajb.94.12.2041

Wang, Y.-Q., Melzer, R., & Theißen, G. (2010). Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of ‘floral quartets.’ The Plant Journal, 64(2), 177–190. https://doi.org/10.1111/j.1365-313X.2010.04325.x

Zeng, L., Zhang, Q., Sun, R., Kong, H., Zhang, N., & Ma, H. (2014). Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nature Communications, 5(1), 4956. https://doi.org/10.1038/ncomms5956

Descargas

Publicado

18.07.2025

Número

Sección

Revisiones (Reviews)

Cómo citar

El «Abominable misterio de Darwin»: una revisión en los avances del origen y evolución de las angiospermas. (2025). Steviana , 17(1), 21-35. https://doi.org/10.56152/StevianaFacenV17N1A3_2025

Artículos similares

1-10 de 118

También puede Iniciar una búsqueda de similitud avanzada para este artículo.