Eventos de precipitación extrema aumentan la circulación de patógenos infecciosos: detección de rotavirus, norovirus, astrovirus, adenovirus entérico y micobacterias no tuberculosas en agua de las inundaciones en Asunción, Paraguay, año 2014

Autores/as

  • Maria Eugenia Galeano Dinatale Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud (IICS, UNA), Departamento de Biología Molecular y Biotecnología. San Lorenzo, Paraguay https://orcid.org/0000-0002-4476-3486
  • Laura Ximena Franco Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud (IICS, UNA), Departamento de Biología Molecular y Biotecnología. San Lorenzo, Paraguay https://orcid.org/0000-0001-6567-5146
  • Samuel Gabaglio Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud (IICS, UNA), Departamento de Biología Molecular y Biotecnología. San Lorenzo, Paraguay https://orcid.org/0000-0003-1272-6645
  • Nathalia Zarza Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud (IICS, UNA), Departamento de Biología Molecular y Biotecnología. San Lorenzo, Paraguay https://orcid.org/0000-0003-0519-1347
  • Mara Muñoz Ministerio de Salud Pública y Bienestar Social (MSPyBS), Dirección General de Vigilancia de la Salud (DGVS). Asunción, Paraguay https://orcid.org/0000-0002-6298-5621
  • Dora Ramírez Ministerio de Salud Pública y Bienestar Social (MSPyBS), IX Región Sanitaria. Paraguarí, Paraguay https://orcid.org/0000-0001-9545-5515
  • Magaly Martínez Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud (IICS, UNA), Departamento de Biología Molecular y Biotecnología. San Lorenzo, Paraguay https://orcid.org/0000-0003-2877-2363

DOI:

https://doi.org/10.18004/mem.iics/1812-9528/2022.020.02.29

Palabras clave:

virus transmitidos por el agua, gastroenteritis viral, aguas de inundación, rotavirus, norovirus, astrovirus, adenovirus entérico, micobacterias no tuberculosas

Resumen

Las precipitaciones extremas representan uno de los eventos naturales climáticos más importantes y pueden originar inundaciones devastadoras. De junio a agosto del 2014 se registró una de las más graves inundaciones en la historia de la ciudad de Asunción. Ocasionó un incremento considerable del nivel del río Paraguay y el desplazamiento de 300.000 personas a campamentos provisionales. Debido a que el contacto directo con el agua de inundación, el consumo de agua contaminada y la congregación de los afectados en refugios provisorios son factores de riesgo para enfermedades infecciosas, el objetivo de este estudio fue la implementación de una metodología estandarizada para la concentración y detección de virus entéricos y micobacterias no tuberculosas, por PCR en tiempo real y PCR-asociada al análisis de restricción enzimática (PRA), en muestras de agua de inundaciones y el reporte de los patógenos detectados en las zonas afectadas de Asunción y en la Bahía del Río Paraguay. La metodología propuesta demostró poseer buena sensibilidad y se registró la presencia de rotavirus, norovirus (genogrupos I y II), astrovirus, adenovirus entéricos y micobacterias no tuberculosas en 50% (N=4/8) de las muestras de los barrios Sajonia, San Jerónimo y Ricardo Brugada, Chacarita. Además, reportamos datos secundarios de casos de enfermedades infecciosas, registrados en los servicios de salud de los barrios afectados durante el periodo de inundación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Henry R, Schang C, Coutts S, Kolotelo P, Prosser T, Crosbie N, et al. Into the deep: Evaluation of Source Tracker for assessment of faecal contamination of coastal waters. Water Research. 2016; 93: 242-53.

Straub TM, Pepper IL, Abbaszadegan M, Gerba CP. A method to detect enteroviruses in sewage sludge-amended soil using the PCR. Appl Environ Microbiol. 1994; 60(3): 1014-7. [ Links ]

Bosch A. Human enteric viruses in the water environment: a minireview. Int Microbiol. 1998; 1(3): 191-6.

Clesceri LS, Park RA, Bloomfield JA. General Model of Microbial Growth and Decomposition in Aquatic Ecosystems. Appl Environ Microbiol.1977; 33(5): 1047-58.

Metcalf TG, Melnick JL, Estes MK. Environmental virology: from detection of virus in sewage and water by isolation to identification by molecular biology--a trip of over 50 years. Annu Rev Microbiol. 1995; 49: 461-87.

Ye XY, Ming X, Zhang YL, Xiao WQ, Huang XN, Cao YG, et al. Real-time PCR detection of enteric viruses in source water and treated drinking water in Wuhan, China. Curr Microbiol. 2012; 65(3):244-53.

Dankers R, Feyen L. Flood hazard in Europe in an ensemble of regional climate scenarios. J. Geophys. Res. 2009; 114 (D16108).

Dankers R, Feyen L. Climate change impact on flood hazard in Europe: An assessment based on high resolution climate simulations. J. Geophys. Res. 2008; 113(D19).

Wakuma AS, Mandere N, Ewald G. Floods and health in Gambella region, Ethiopia: a qualitative assessment of the strengths and weaknesses of coping mechanisms. Glob Health Action 2009; 2.

Greenough G, McGeehin M, Bernard SM, Trtanj J, Riad J, Engelberg D. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States. Environ Health Perspect. mayo de 2001; 109 (Suppl 2): 191-8.

Wade TJ, Sandhu SK, Levy D, Lee S, LeChevallier MW, Katz L, et al. Did a severe flood in the Midwest cause an increase in the incidence of gastrointestinal symptoms? Am J Epidemiol. 15 de febrero de 2004; 159(4): 398-405.

Tunstall S, Tapsell S, Green C, Floyd P, George C. The health effects of flooding: Social research results from England and Wales. J Water Health. septiembre de 2006; 4(3): 365-80.

MohdRadi MF, Hashim JH, Jaafar MH, Hod R, Ahmad N, Mohammed Nawi A, et al. Leptospirosis Outbreak After the 2014 Major Flooding Event in Kelantan, Malaysia: A Spatial-Temporal Analysis. Am J Trop Med Hyg. 2018 May; 98(5): 1281-95.

O'Reilly CE, Bowen AB, Perez NE, Sarisky JP, Shepherd CA, Miller MD, et al; Outbreak Working Group. A waterborne outbreak of gastroenteritis with multiple etiologies among resort island visitors and residents: Ohio, 2004. Clin Infect Dis. 2007 Feb 15; 44(4): 506-12.

Tapsell SM, Penning-Rowsell EC, Tunstall SM, Wilson TL. Vulnerability to flooding: health and social dimensions. Philos Trans A Math Phys Eng Sci. 15 de julio de 2002; 360 (1796): 1511-25.

Tornevi A, Axelsson G, Forsberg B. Association between Precipitation Upstream of a Drinking Water Utility and Nurse Advice Calls Relating to Acute Gastrointestinal Illnesses. PLoSOne [Internet]. 16 de julio de 2013 [citado 10 de diciembre de 2019]; 8(7).

Bennett A, Pollock L, Jere KC, Pitzer VE, Lopman B, Bar-Zeev N, et al. Duration and Density of Fecal Rotavirus Shedding in Vaccinated Malawian Children With Rotavirus Gastroenteritis. J Infect Dis. 2020 Nov 13; 222(12): 2035-2040.

Abbaszadegan M, Monteiro P, Nwachuku N, Alum A, Ryu H. Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment. J Environ Sci Health A Tox Hazard Subst Environ Eng. febrero de 2008; 43(2): 171-7.

Green KC, Kappikian A. Human Caliciviruses. In: KNIPE, D.M.H.; GRIFFIN, D.E.; LAMB, R.A.; et al. Fields Virology. Fourth ed. Philadelphia: L.W. Wilkinson. 2001. Cap. 12, p. 684-709.

Pina S, Puig M, Lucena F, Rosina Girones JJ. Viral pollution in the environment and in shellfish: human adenovirus detection by PCR as an index of human viruses. Appl Environ Microbiol, 1998, 64(9): 3376-82.

Parashar UD, Gibson CJ, Bresee JS, Glass Rose I. Rotavirus and severe childhood diarrhea. Emerg Infect Dis, 2006, 12(2):304-6.

Matthijnssens J, Ciarlet M, Rahman M, Houssam A, Bányai K, Estes MK, et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol, 2008, 153(8): 621-9.

Abe M, Ito N, Morikawa S, Takasu M, Murase T, Kawashima T, et al. Molecular epidemiology of rotaviruses among healthy calves in Japan: isolation of a novel bovine rotavirus bearing new P and G genotypes. Virus Res, 2009; 144 (1-2): 250-7

Martinez M, Phan TG, Galeano ME, Russomando G, Parreno V, Delwart E, et al. Genomic characterization of a rotavirus G8P [1] detected in a child with diarrhea reveal direct animal-to-human transmission. Infect Genet Evol. 2014; 27: 402-7.

Zheng DP, Ando T, Fankhauser RL, Beard RS, Glass RI, Monroe SS. Norovirus classification and proposed strain nomenclature. Virology. 2006; 346(2):312-23.

Patel MM, Hall AJ, Vinjé J, Umesh D Parashar. Noroviruses: a comprehensive review. J Clin Virol, 2009; 44(1): 1-8.

CDC. Norwalk-Like Viruses; Public Health Consequences and Outbreak Management. Atlanta: U.S. Department of Health and Human Services. 2001.

Galeano ME, Martínez M, Amarilla AA, Russomando G, Miagostovich MP, Parra GI, et al. Molecular epidemiology of norovirus strains in Paraguayan children during 2004-2005: description of a possible new GII.4 cluster. J Clin Virol. 2013; 58(2): 378-84.

Bosch A, Pintó RM, Guix S. Human astroviruses. Clin Microbiol Rev. 2014; 27(4): 1048-74.

Méndez E, Arias CF. Astroviruses. In: Knipe DM, Howley PM, editor. Fields Virology. 6ta edición. 2013. p. 609-28.

International Committee on Taxonomy of Viruses (ICTV). ICTV 9th Report (2011) (acceso el 15 julio del 2017). Disponible en: https://talk.ictvonline.org/ictvreports/ictv_9th_report/positive-sense-rna-viruses-2011/

Malmberg M, Rubio-Guerri C, Hayer J, García-Párraga D, Nieto-Pelegrín E, Melero M, et al. Phylogenomic analysis of the complete sequence of a gastroenteritis-associated cetacean adenovirus (bottlenose dolphin adenovirus 1) reveals a high degree of genetic divergence. Infect Genet Evol [Internet]. 2017; 53: 47-55.

Ryu W-S. Adenoviruses. In: Molecular Virology of Human Pathogenic Viruses [Internet]. Seoul, Korea: Elsevier; 2017. p. 289-302.

La Rosa G, Della Libera S, Petricca S, Iaconelli M, Donia D, Saccucci P, et al. Genetic diversity of human adenovirus in children with acute gastroenteritis, Albania, 2013-2015. Biomed Res Int. 2015; 2015.

García García JM, Palacios Gutiérrez JJ, Sánchez Antuña AA. [Respiratory infections caused by environmental mycobacteria]. Arch Bronconeumol. abril de 2005;41(4): 206-19.

Jarzembowski JA, Young MB. Nontuberculous mycobacterial infections. Arch Pathol Lab Med. agosto de 2008; 132(8): 1333-41.

Tichenor WS, Thurlow J, McNulty S, Brown-Elliott BA, Wallace RJ, Falkinham JO. Nontuberculous Mycobacteria in Household Plumbing as Possible Cause of Chronic Rhinosinusitis. Emerg Infect Dis. octubre de 2012; 18(10): 1612-7.

Centers for Disease Control and Prevention (CDC). Tattoo-associated nontuberculous mycobacterial skin infections--multiple states, 2011-2012. MMWR Morb Mortal Wkly Rep. 24 de agosto de 2012; 61(33):653-6.

Sood G, Parrish N. Outbreaks of nontuberculous mycobacteria. Curr Opin Infect Dis. agosto de 2017; 30(4): 404-9.

Hypolite T, Grant-Kels JM, Chirch LM. Nontuberculous mycobacterial infections: a potential complication of cosmetic procedures. Int J Womens Dermatol. 24 de febrero de 2015; 1(1):51-4.

RTVE.es / EFE. Las inundaciones en Paraguay provocan más de 300.000 desplazados según Unicef [Internet]. Radiotelevisión Española. 2014 [citado 10 de diciembre de 2019]. Disponible en: http://www.rtve.es/noticias/20140628/inundaciones-paraguay-provocan-mas-300000-desplazados-segun-unicef/962880.shtml

Dirección de Meteorología e Hidrología (DHM), Dirección Nacional de Aeronáutica Civil (DINAC). Nivel de Altura del Río Paraguay [Internet]. Asuncion, Paraguay: Dirección de Meteorología e Hidrología (DMH); 2019 dic [citado 11 de diciembre de 2019]. Disponible en: https://www.meteorologia.gov.py/nivel-rio/vermascalendario.php?estacion=2000086218&fechadesde=01-01-2014&fechahasta=31-12-2015

Casartelli M, UNICEF. Desterrados del destierro. UNICEF [Internet]. online. 12 de agosto de 2014 [citado 11 de diciembre de 2019]; Disponible en: https://www.unicef.org/paraguay/stories/desterrados-del-destierro

Fariña N, Franco L, Tenace O, Figueredo L, Vega M, Báez E. Infección de región parotídea por Mycobacteriumabscessus. Memorias del Instituto de Investigaciones en Ciencias de la Salud. diciembre de 2009; 7(2): 50-4.

Candia N, Lopez B, Zozio T, Carrivale M, Diaz C, Russomando G, et al. First insight into Mycobacterium tuberculosis genetic diversity in Paraguay. BMC Microbiol. 8 de agosto de 2007; 7: 75.

Calgua B, Mengewein A, Grunert A, Bofill-Mas S, Clemente-Casares P, Hundesa A, et al. Development and application of a one-step low cost procedure to concentrate viruses from seawater samples. J Virol Methods. noviembre de 2008; 153(2): 79-83.

Asunción. En: Wikipedia, la enciclopedia libre [Internet]. 2019 [citado 16 de diciembre de 2019]. Disponible en: https://es.wikipedia.org/w/index.php?title=Asunci%C3%B3n&oldid=121870702

SEAM. Política ambiental nacional del Paraguay (PAN). En: Presidencia de la República del Paraguay. Asunción, Paraguay: Secretaría del Ambiente.; 2005 [citado 9 de diciembre de 2019]. p. 22. Disponible en: http://archivo.seam.gov.py/sites/default/files/politica_ambiental_Nacional.pdf

SEAM. Métodos Normalizados para el análisis de aguas potables y residuales, edición No.17 APHA-AWWA-WPCF; Resolución No. 222/02 SEAM. 2002.

Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-Van Dillen PM, van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990; 28(0095-1137 (Print)):495-503.71.

Giambiagi S, Rodriguez IG, Gomez J, Burrone O. A rearranged genomic segment 11 is common to different human rotaviruses. Archives of Virology, 1994; 136(3-4), 415-421.

Rohayem J, Berger S, Juretzek T, Ottmar Herchenröder, Michael Mogel, Maya Poppe, et al. A simple and rapid single-step multiplex RT-PCR to detect Norovirus, Astrovirus and Adenovirus in clinical stool samples. J Virol Methods. 2004; 118(1): 49-59.

Jiang X, Huang P, Zhong W, Farkas T, Cubitt DW, Matson DO. Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR. J Virol Methods. 1999;83(1-2): 145-54.

van Soolingen D, Hermans PW, de HaasPE Soll DR, van Embden JD. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol. 1991 Nov; 29(11): 2578-2586.

Telenti A, Marchesi F, Balz M, Bally F, Böttger EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. 1993 Feb; 31(2): 175-178

Wu T, Chia J, Kuo A, Su L, Wu T, Lai H. Rapid Identification of Mycobacteria from Smear-Positive Sputum Samples by Nested PCR-Restriction Fragment Length Polymorphism Analysis. J Clin Microbiol. 2008; 46 (11): 3591-94.

Hospicescantonaux; PRASITE [Database]; 1999 [citado 9 de diciembre de 2021]. Última actualización: 15/09/2007. Disponible en: http://app.chuv.ch/prasite/index.html

Stuempfig ND, Seroy J, Labat-butler JR, Permanente T, Group M. Viral Gastroenteritis (Nursing). 2021; 1-6.

Wikipedia, La enciclopedia libre. Fecha de consulta: 17:57, noviembre 30, 2014. Disponible en: https://es.wikipedia.org/wiki/Wikipedia:Portada

Tacket CO, Sztein MB, Losonsky GA, Wasserman SS, Estes MK. Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin Immunol. 2003; 108: 241-247.

He J, Jiang S. Quantification of enterococci and human adenoviruses in environmental samples by real-time PCR. Appl. Environ. Microbiol. 2005; 71(5): 2250e2255.

Chimara E, Ferrazoli L, Ueky SYM, Martins MC, Durham AM, Arbeit, RD. Reliable identification of mycobacterial species by PCR-restriction enzyme analysis (PRA)-hsp65 in a reference laboratory and elaboration of a sequence-based extended algorithm of PRA-hsp65 patterns. BMC Microbiol. 2008; 8: 48.

McCarthy C, Ashbaugh P. Factors that affect the cell cycle of Mycobacterium avium. Rev Infect Dis 1981; 3: 914- 925. [ Links ]

Valls J, Segura L, Viñas M, Avendaño E. Urgencias en atención primaria y derivación de pacientes al hospital. Aten Primaria 1990; 7(8): 593-594.

Rodríguez Carvaca G, Villar del Campo I. Concordancia diagnostic entre atención primaria y atención especializada tras consulta urgente. Atención Primaria. 2000; 25(5): 292-296.

Organización Mundial de la Salud. Enfermedades diarreicas. Nota descriptiva No.330. Abril 2013. Disponible en: http://www.who.int/mediacentre/factsheets/fs330/es/. Consultado el 23 de marzo de 2022

Diaz JH. Rodent-borne infectious disease outbreaks after flooding disasters: Epidemiology, management, and prevention. J Emerg Manag. 2015 Sep-Oct; 13 (5): 459-67.

Tall JA, Gatton ML. Flooding and Arboviral Disease: Predicting Ross River Virus Disease Outbreaks Across Inland Regions of South-Eastern Australia. J Med Entomol. 2020 Jan 9; 57(1): 241-251.

Miyamura T. Hepatitis E virus infection in developed countries. Virus Res. 2011 Oct; 161(1): 40-6.

Descargas

Publicado

2022-08-01

Cómo citar

Galeano Dinatale, M. E., Franco, L. X., Gabaglio, S., Zarza, N. ., Muñoz, M., Ramírez, D., & Martínez, M. (2022). Eventos de precipitación extrema aumentan la circulación de patógenos infecciosos: detección de rotavirus, norovirus, astrovirus, adenovirus entérico y micobacterias no tuberculosas en agua de las inundaciones en Asunción, Paraguay, año 2014. Memorias Del Instituto De Investigaciones En Ciencias De La Salud, 20(2), 29–47. https://doi.org/10.18004/mem.iics/1812-9528/2022.020.02.29

Número

Sección

Articulos Originales

Artículos similares

<< < 20 21 22 23 24 25 26 27 28 29 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.