Cambios en el interés público sobre la seguridad alimentaria y los comportamientos de estilo de vida en Paraguay durante COVID-19, diciembre de 2019 a diciembre de 2020
DOI:
https://doi.org/10.18004/mem.iics/1812-9528/2024.e22122407Palabras clave:
COVID-19, seguridad alimentaria, conductas alimentarias, hierbas, estilos de vida, google trendsResumen
La pandemia de COVID-19 ha impactado en varios aspectos de la vida a nivel mundial. Se analizó la influencia de la pandemia en el interés público por la seguridad alimentaria, los comportamientos dietéticos, los nutrientes y las hierbas relacionados con la inmunidad, y los estilos de vida en Paraguay, utilizando datos de Google Trends desde diciembre de 2019 hasta diciembre de 2020. Se obtuvieron los volúmenes de búsqueda relativos para palabras clave seleccionadas y se correlacionaron utilizando el coeficiente de correlación de orden de rango de Spearman. Se observó una correlación positiva entre las búsquedas relacionadas con el COVID-19 y el interés por la seguridad y la higiene alimentarias. Los términos relacionados con el comportamiento alimentario mostraron correlaciones mixtas, con una correlación negativa para "Yoga" y positiva para "Hierro". Los términos relacionados con el estilo de vida en interiores, como "Netflix" y "Receta", mostraron correlaciones positivas con las búsquedas relacionadas con el coronavirus, mientras que los términos relacionados con el estilo de vida en exteriores, como "Hotel", "Parque" y "Resort", mostraron correlaciones negativas muy fuertes. Los nutrientes y hierbas relacionados con la inmunidad, en particular "Cebolla" y "Cúrcuma", mostraron correlaciones positivas de fuertes a moderadas con términos relacionados con COVID-19. Estos resultados sugieren que la pandemia ha influido en el interés público por diversos aspectos de las conductas alimentarias y los estilos de vida, lo que pone de relieve la necesidad de estrategias y políticas de comunicación adaptadas para promover la resiliencia y la equidad durante las crisis sanitarias.
Descargas
Citas
1. Bisen AC, Agrawal S, Sanap SN, Ravi Kumar HG, Kumar N, Gupta R, et al. COVID‐19 retreats and world recovers: A silver lining in the dark cloud. Health Care Sci. 2023 Aug; 2(4): 264–85. https://doi.org/10.1002/hcs2.57
2. Dasgupta S, Robinson EJZ. Impact of COVID-19 on food insecurity using multiple waves of high frequency household surveys. Sci Rep. 2022 Feb 3; 12(1): 1865. https://doi.org/10.1038/s41598-022-05664-3
3. Massoud R, Zoghi A. The effects of the COVID-19 pandemic on food systems: limitations and opportunities. Discov Food. 2024 Oct 3; 4(1): 102. https://doi.org/10.1007/s44187-024-00183-8
4. Jagtap S, Trollman H, Trollman F, Garcia‐Garcia G, Martindale W. Surviving the storm: navigating the quadruple whammy impact on Europe’s food supply chain. Int J Food Sci Technol. 2024 Jun;59(6): 3652–66. https://doi.org/10.1111/ijfs.17106
5. Nechifor V, Ramos MP, Ferrari E, Laichena J, Kihiu E, Omanyo D, et al. Food security and welfare changes under COVID-19 in Sub-Saharan Africa: Impacts and responses in Kenya. Glob Food Secur. 2021 Mar;28:100514. https://doi.org/10.1016/j.gfs.2021.100514
6. Folorunso A, Olu-Lawal F, Omoniyi S. Nutritional knowledge and immunity-boosting food consumption patterns before and after the COVID-19 pandemic lockdown periods in Osun State, Nigeria. Nutr Health. 2022 Dec; 28(4): 761–9. https://doi.org/10.1177/02601060221122153
7. Hamulka J, Jeruszka-Bielak M, Górnicka M, Drywień ME, Zielinska-Pukos MA. Dietary Supplements during COVID-19 Outbreak. Results of Google Trends Analysis Supported by PLifeCOVID-19 Online Studies. Nutrients. 2020 Dec 27; 13(1): 54. https://doi.org/10.3390/nu13010054
8. Celorio-Sardà R, Comas-Basté O, Latorre-Moratalla ML, Zerón-Rugerio MF, Urpi-Sarda M, Illán-Villanueva M, et al. Effect of COVID-19 Lockdown on Dietary Habits and Lifestyle of Food Science Students and Professionals from Spain. Nutrients. 2021 Apr 28; 13(5): 1494.
https://doi.org/10.3390/nu13051494
9. Madan J, Blonquist T, Rao E, Marwaha A, Mehra J, Bharti R, et al. Effect of COVID-19 Pandemic-Induced Dietary and Lifestyle Changes and Their Associations with Perceived Health Status and Self-Reported Body Weight Changes in India: A Cross-Sectional Survey. Nutrients. 2021 Oct 20; 13(11): 3682. https://doi.org/10.3390/nu13113682
10. Mignogna C, Costanzo S, Ghulam A, Cerletti C, Donati MB, de Gaetano G, et al. Impact of Nationwide Lockdowns Resulting from the First Wave of the COVID-19 Pandemic on Food Intake, Eating Behaviors, and Diet Quality: A Systematic Review. Adv Nutr. 2022 Mar; 13(2): 388–423.
https://doi.org/10.1093/advances/nmab130
11. Dobrowolski H, Włodarek D. Body Mass, Physical Activity and Eating Habits Changes during the First COVID-19 Pandemic Lockdown in Poland. Int J Environ Res Public Health. 2021 May 26; 18(11): 5682. https://doi.org/10.3390/ijerph18115682
12. Caroppo E, Mazza M, Sannella A, Marano G, Avallone C, Claro AE, et al. Will Nothing Be the Same Again?: Changes in Lifestyle during COVID-19 Pandemic and Consequences on Mental Health. Int J Environ Res Public Health. 2021 Aug 10; 18(16): 8433. https://doi.org/10.3390/ijerph18168433
13. Chu AM, Chong ACY, Lai NHT, Tiwari A, So MKP. Enhancing the Predictive Power of Google Trends Data Through Network Analysis: Infodemiology Study of COVID-19. JMIR Public Health Surveill. 2023 Sep 7; 9: e42446. https://doi.org/10.2196/42446
14. Mathieu E, Ritchie H, Rodés-Guirao L, Appel C, Gavrilov D, Giattino C, et al. Coronavirus (COVID-19) Cases. Our World Data [Internet]. 2024 Nov 15 [cited 2024 Dec 20]; Available from: https://ourworldindata.org/covid-cases
15. Bantis E, Clements MP, Urquhart A. Forecasting GDP growth rates in the United States and Brazil using Google Trends. Int J Forecast. 2023 Oct; 39(4): 1909–24. https://doi.org/10.1016/j.ijforecast.2022.10.003
16. Apify [Internet]. [cited 2024 Dec 20]. Apify: Full-stack web scraping and data extraction platform. Available from: https://apify.com
17. Mastragostino E. Apify. 2020 [cited 2024 Dec 19]. Google Trends Scraper. https://apify.com/emastra/google-trends-scraper
18. Puhr H, Müllner J. Vox populi, vox dei: A concept and measure for grassroots socio-political risk using Google Trends. J Int Manag. 2024 Apr; 30(2): 101096. https://doi.org/10.1016/j.intman.2023.101096
19. Mavragani A, Tsagarakis KP. YES or NO: Predicting the 2015 GReferendum results using Google Trends. Technol Forecast Soc Change. 2016 Aug;109:1–5. https://doi.org/10.1016/j.techfore.2016.04.028
20. Mavragani A, Ochoa G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health Surveill. 2019 May 29; 5(2): e13439. https://doi.org/10.2196/13439
21. Mayasari NR, Ho DKN, Lundy DJ, Skalny AV, Tinkov AA, Teng IC, et al. Impacts of the COVID-19 Pandemic on Food Security and Diet-Related Lifestyle Behaviors: An Analytical Study of Google Trends-Based Query Volumes. Nutrients. 2020 Oct 12; 12(10):3103. https://doi.org/10.3390/nu12103103
22. Correia RA, Di Minin E, Jarić I, Jepson P, Ladle R, Mittermeier J, et al. Inferring public interest from search engine data requires caution. Front Ecol Environ. 2019 Jun;17(5):254–5. https://doi.org/10.1002/fee.2048
23. Borup D, Schütte ECM. In Search of a Job: Forecasting Employment Growth Using Google Trends. J Bus Econ Stat. 2022 Jan 2; 40(1): 186–200. https://doi.org/10.1080/07350015.2020.1791133
24. Bhatia J, Breaux TD, Reidenberg JR, Norton TB. A Theory of Vagueness and Privacy Risk Perception. In: 2016 IEEE 24th International Requirements Engineering Conference (RE) [Internet]. Beijing, China: IEEE; 2016 [cited 2025 Jan 15]. p. 26–35. Available from:
http://ieeexplore.ieee.org/document/7765508/
25. Woloszko N. Tracking activity in real time with Google Trends [Internet]. 2020 Dec [cited 2024 Nov 23] p. 55. Report No.: 1634. Available from: https://dx.doi.org/10.1787/6b9c7518-en
26. Szczygielski JJ, Charteris A, Bwanya PR, Brzeszczyński J. Google search trends and stock markets: Sentiment, attention or uncertainty? Int Rev Financ Anal. 2024 Jan;91:102549. https://doi.org/10.1016/j.irfa.2023.102549
27. Phillips BB, Burgess K, Willis C, Gaston KJ. Monitoring public engagement with nature using Google Trends. People Nat. 2022 Oct;4(5):1216–32. https://doi.org/10.1002/pan3.10381
28. Nuti SV, Wayda B, Ranasinghe I, Wang S, Dreyer RP, Chen SI, et al. The Use of Google Trends in Health Care Research: A Systematic Review. Voracek M, editor. PLoS ONE. 2014 Oct 22;9(10):e109583. https://doi.org/10.1371/journal.pone.0109583
29. Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018 Sep; 18(3): 91–3. https://doi.org/10.1016/j.tjem.2018.08.001
30. RStudio Team. RStudio: Integrated Development for R [Internet]. Boston, MA: RStudio, PBC; [cited 2024 Dec 15]. http://www.rstudio.com/
31. Konishi N, Kimura M, Takeda Y. Prosociality predicts changes in leisure activities during the COVID-19 pandemic. Front Psychol. 2024 Feb 27; 15: 1320885. https://doi.org/10.3389/fpsyg.2024.1320885
32. Krejčí M, Staňková M. The Position of Netflix in the Czech Republic Before and During the COVID-19 Pandemic. Eur J Bus Sci Technol. 2022 Jul 31;8(1): 72–83. https://doi.org/10.11118/ejobsat.2021.010
33. Larson LR, Mullenbach LE, Browning MHEM, Rigolon A, Thomsen J, Metcalf EC, et al. Greenspace and park use associated with less emotional distress among college students in the United States during the COVID-19 pandemic. Environ Res. 2022 Mar; 204: 112367.
https://doi.org/10.1016/j.envres.2021.112367
34. Dunton GF, Do B, Wang SD. Early effects of the COVID-19 pandemic on physical activity and sedentary behavior in children living in the U.S. BMC Public Health. 2020 Dec; 20(1): 1351. https://doi.org/10.1186/s12889-020-09429-3
35. Jackson AM, Weaver RH, Iniguez A, Lanigan J. A lifespan perspective of structural and perceived social relationships, food insecurity, and dietary behaviors during the COVID-19 pandemic. Appetite. 2022 Jan;168: 105717. https://doi.org/10.1016/j.appet.2021.105717
36. Balanzá-Martínez V, Kapczinski F, De Azevedo Cardoso T, Atienza-Carbonell B, Rosa AR, Mota JC, et al. The assessment of lifestyle changes during the COVID-19 pandemic using a multidimensional scale. Rev Psiquiatr Salud Ment. 2021 Jan;14(1): 16–26. https://doi.org/10.1016/j.rpsm.2020.07.003
37. Hollis-Hansen K, Ferrante MJ, Goldsmith J, Anzman-Frasca S. Family Food Insecurity, Food Acquisition, and Eating Behavior Over 6 Months Into the COVID-19 Pandemic. J Nutr Educ Behav. 2022 Jul; 54(7): 660–9. https://doi.org/10.1016/j.jneb.2022.04.002
38. Alibudbud R. Google Trends for health research: Its advantages, application, methodological considerations, and limitations in psychiatric and mental health infodemiology. Front Big Data. 2023 Mar 27; 6: 1132764. https://doi.org/10.3389/fdata.2023.1132764
39. Jun SP, Yoo HS, Choi S. Ten years of research change using Google Trends: From the perspective of big data utilizations and applications. Technol Forecast Soc Change. 2018 May; 130: 69–87. https://doi.org/10.1016/j.techfore.2017.11.009
40. Kupfer A, Zorn J. A Language-Independent Measurement of Economic Policy Uncertainty in Eastern European Countries. Emerg Mark Finance Trade. 2020 Apr 8; 56 (5): 1166–80. https://doi.org/10.1080/1540496X.2018.1559140