La «tercera parte» en la consulta: Inteligencia artificial y la rehumanización de la relación médico-paciente en atención primaria
Palabras clave:
inteligencia artificial, atención primaria de salud, relación médico-paciente, empatía clínica, ética médica, brecha digitalResumen
Introducción: La integración de la inteligencia artificial (IA) en la atención primaria de salud (APS) constituye una fuerza disruptiva que reconfigura la dinámica tradicional de la relación médico-paciente. Este artículo examina críticamente si la IA actúa como una barrera tecnológica deshumanizante o, paradójicamente, como un catalizador para recuperar la dimensión humana de la medicina.
Objetivo: Evaluar el impacto de la IA en la comunicación clínica, la empatía, la carga administrativa y la equidad sanitaria, con énfasis en contextos de recursos limitados.
Métodos: Se realizó una revisión bibliográfica narrativa exhaustiva de literatura reciente (2020-2025), priorizando estudios sobre medicina familiar, ética clínica y salud digital.
Resultados y discusión: La evidencia indica que la IA ambiental y los sistemas de documentación automatizada pueden reducir sustancialmente la carga burocrática, liberando tiempo crítico para la interacción presencial. No obstante, emergen riesgos éticos significativos, como la erosión de la confianza fiduciaria, la opacidad algorítmica y la potencial despersonalización del cuidado si la tecnología suplanta el juicio clínico. En países de ingresos bajos y medianos, la brecha digital y la infraestructura deficiente plantean desafíos estructurales para una implementación equitativa.
Conclusión: La IA posee el potencial de rehumanizar la APS al automatizar la burocracia, siempre que su implementación garantice la supervisión humana, la transparencia ética y la mitigación activa de las disparidades socioeconómicas.
Referencias
Toscano F, O’Donnell E, Broderick JE, May M, Tucker P, Unruh MA, et al. How physicians spend their work time: An ecological momentary assessment. J Gen Intern Med [Internet]. 2020 Nov;35(11):3166–72. Available from: http://dx.doi.org/10.1007/s11606-020-06087-4
Holtz B, Nelson V, Poropatich RK. Artificial intelligence in health: Enhancing a return to patient-centered communication. Telemed J E Health [Internet]. 2023 Jun;29(6):795–7. Available from: http://dx.doi.org/10.1089/tmj.2022.0413
Maltaş E, Gümüş M, Kızılkaya E, Orhan S. Effects of artificial intelligence used in healthcare on confidence on patient and physician. Gevher Nesibe Journal IESDR [Internet]. 2022 Jan 25;7(16):30–6. Available from: http://dx.doi.org/10.46648/gnj.301
Ghatnekar S, Faletsky A, Nambudiri VE. Digital scribe utility and barriers to implementation in clinical practice: a scoping review. Health Technol (Berl) [Internet]. 2021 Jun 2;11(4):803–9. Available from: http://dx.doi.org/10.1007/s12553-021-00568-0
Kanaparthy NS, Villuendas-Rey Y, Bakare T, Diao Z, Iscoe M, Loza A, et al. Real-world evidence synthesis of digital scribes using ambient listening and generative artificial intelligence for clinician documentation workflows: Rapid review. JMIR AI [Internet]. 2025 Oct 10;4(v4i5e76743):e76743. Available from: http://dx.doi.org/10.2196/76743
Ma SP, Liang AS, Shah SJ, Smith M, Jeong Y, Devon-Sand A, et al. Ambient artificial intelligence scribes: utilization and impact on documentation time. J Am Med Inform Assoc [Internet]. 2025 Feb 1;32(2):381–5. Available from: http://dx.doi.org/10.1093/jamia/ocae304
Kerasidou A, Horn R. Making space for empathy: supporting doctors in the emotional labour of clinical care. BMC Med Ethics [Internet]. 2016 Jan 27;17(1):8. Available from: http://dx.doi.org/10.1186/s12910-016-0091-7
Wojda T, Hoffman C, Jackson J, Conti T, Maier J. AI in healthcare: Implications for Family Medicine and Primary Care. In: Artificial Intelligence [Internet]. IntechOpen; 2023. Available from: http://dx.doi.org/10.5772/intechopen.111498
Decety J, Fotopoulou A. Why empathy has a beneficial impact on others in medicine: unifying theories. Front Behav Neurosci [Internet]. 2014;8:457. Available from: http://dx.doi.org/10.3389/fnbeh.2014.00457
Yu FSK, Yip BHK, Kung K, Fung CSC, Wong CKM, Lam AT, et al. The association of types of training and practice settings with doctors’ empathy and patient enablement among patients with chronic illness in Hong Kong. PLoS One [Internet]. 2015 Dec 14;10(12):e0144492. Available from: http://dx.doi.org/10.1371/journal.pone.0144492
Allen MR, Webb S, Mandvi A, Frieden M, Tai-Seale M, Kallenberg G. Navigating the doctor-patient-AI relationship - a mixed-methods study of physician attitudes toward artificial intelligence in primary care. BMC Prim Care [Internet]. 2024 Jan 27;25(1):42. Available from: http://dx.doi.org/10.1186/s12875-024-02282-y
Amann J, Blasimme A, Vayena E, Frey D, Madai VI, Precise4Q consortium. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak [Internet]. 2020 Nov 30;20(1):310. Available from: http://dx.doi.org/10.1186/s12911-020-01332-6
Zahir L, Hussian L, Zia W, Haider I. The role of ChatGPT in clinical practice: perceptions, expectations and future implications amongst the clinical faculty. Pak J Med Sci Q [Internet]. 2025 Sep;41(9):2441–7. Available from: http://dx.doi.org/10.12669/pjms.41.9.12131
Chew HSJ, Achananuparp P. Perceptions and needs of artificial intelligence in health care to increase adoption: Scoping review. J Med Internet Res [Internet]. 2022 Jan 14;24(1):e32939. Available from: http://dx.doi.org/10.2196/32939
Ciecierski-Holmes T, Singh R, Axt M, Brenner S, Barteit S. Artificial intelligence for strengthening healthcare systems in low- and middle-income countries: a systematic scoping review. NPJ Digit Med [Internet]. 2022 Oct 28;5(1):162. Available from: http://dx.doi.org/10.1038/s41746-022-00700-y
Alami H, Rivard L, Lehoux P, Hoffman SJ, Cadeddu SBM, Savoldelli M, et al. Artificial intelligence in health care: laying the Foundation for Responsible, sustainable, and inclusive innovation in low- and middle-income countries. Global Health [Internet]. 2020 Jun 24;16(1):52. Available from: http://dx.doi.org/10.1186/s12992-020-00584-1
Wu Y, Li F, Chen H, Shi L, Yin M, Hu F, et al. Construct prediction models for low muscle mass with metabolic syndrome using machine learning. PLoS One [Internet]. 2025 Sep 9;20(9):e0331925. Available from: http://dx.doi.org/10.1371/journal.pone.0331925
El Arab RA, Alshakihs AH, Alabdulwahab SH, Almubarak YS, Alkhalifah SS, Abdrbo A, et al. Artificial intelligence in nursing: a systematic review of attitudes, literacy, readiness, and adoption intentions among nursing students and practicing nurses. Front Digit Health [Internet]. 2025 Sep 25;7(1666005):1666005. Available from: http://dx.doi.org/10.3389/fdgth.2025.1666005
Ahmed MM, Okesanya OJ, Olaleke NO, Adigun OA, Adebayo UO, Oso TA, et al. Integrating digital health innovations to achieve universal health coverage: Promoting health outcomes and quality through global public health equity. Healthcare (Basel) [Internet]. 2025 May 5;13(9):1060. Available from: http://dx.doi.org/10.3390/healthcare13091060
Amann J, Vayena E, Ormond KE, Frey D, Madai VI, Blasimme A. Expectations and attitudes towards medical artificial intelligence: A qualitative study in the field of stroke. PLoS One [Internet]. 2023 Jan 11;18(1):e0279088. Available from: http://dx.doi.org/10.1371/journal.pone.0279088
Blease C, Kaptchuk TJ, Bernstein MH, Mandl KD, Halamka JD, DesRoches CM. Artificial intelligence and the future of primary care: Exploratory qualitative study of UK general practitioners’ views. J Med Internet Res [Internet]. 2019 Mar 20;21(3):e12802. Available from: http://dx.doi.org/10.2196/12802
Komasawa N, Yokohira M. Generative artificial intelligence (AI) in medical education: A narrative review of the challenges and possibilities for future professionalism. Cureus [Internet]. 2025 Jun;17(6):e86316. Available from: http://dx.doi.org/10.7759/cureus.86316
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Alcides Chaux

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.