Impacto del estrés oxidativo sobre las lesiones cutáneas causadas por radiaciones ionizantes

Autores/as

  • Angelica López Universidad Autónoma de Zacatecas
  • CF Aréchiga Universidad Autónoma de Zacatecas
  • R Bañuelos Universidad Autónoma de Zacatecas
  • OY Barboza Universidad Autónoma de Zacatecas
  • SH Sanchez Universidad Autónoma de Zacatecas
  • Z Lazarova Medical College of Wisconsin, Milwaukee.

Palabras clave:

radiaciones ionizantes, estrés oxidativo, especies reactivas del oxígeno, piel

Resumen

RESUMEN Los efectos inducidos por exposición de manera accidental o terapéutica a dosis de radiaciones ionizantes inducen varios eventos celulares que afectan el proceso de cicatrización de la piel, y tiene gran impacto en la prognosis y supervivencia de individuos afectados. La información existente sobre los efectos nocivos por altas exposiciones a radiaciones proviene a partir de los accidentes ocurridos por las bombas atómicas en Hiroshima y Nagasaki produciendo problemas de salud por leucemias y linfomas en los sobrevivientes. El síndrome de radiación aguda (SRA) generalmente inicia durante las dos horas inmediatas posteriores a la exposición, y la severidad de las lesiones depende de la dosis y del tiempo de exposición. El desarrollo de las lesiones por el daño como efectos tardíos a exposiciones por radiaciones es más complejo y determina no únicamente el daño al parénquima celular sino también se presentan daños en el tejido vascular y en otros tejidos de soporte. Al menos parcialmente estos eventos se presentan a consecuencia del estrés oxidativo generado por el excesivo incremento de especies reactivas del oxígeno (EROs). Se han estado estudiando componentes comerciales como blancos potenciales para la prevención de los daños causados por radiaciones en piel que tienen una amplia actividad contra múltiples citocinas involucradas en los procesos de la lesión cutánea y por otro lado se están estudiando fármacos que reaccionan con los radicales libres o indirectamente inhiben la expresión de las enzimas que generan la producción de EROs o bien aumentan la expresión de enzimas antioxidantes intracelulares.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Sepro LV, Villanueva L, Sanhueza S. Informe Efectos de las Radiaciones ionizantes en el ser humano. Comisión Chilena de Energía Nuclear. (monografía en Internet) Departamento de Protección Radiológica y Ambiental; 2010. (citado 19-11-2011). Disponible en: http://bibliotecaverde.wikieco.org/wp-content/plugins/downloads-manager/upload/inf_EFECTOS_ RADIACIONES_IONIZANTES.pdf.

Meineke V. The role of damage to the cutaneos system in radiation-induce multi-organ failure. Br J Radiol Suppl. 2005; 27:85-99.

Jarrett DG, Sedlak RG, Dickerson WE, Reeves GI. Medical treatment of radiation injuries - current US status. Radiat Mea. 2007; 42:1063-74.

Anno GH, Young RW, Bloom RM, Mercier JR. Doses response relationships for acute ionizing- radiation lethality. Health Phys 2003; 84(5):565-75.

Pazhanisamy SK, Wang LH, Batinic-Haberle I, Zhou D. NADPH oxidase inhibition attenuates total body irradiation-induced haematopoietic genomic instability. Mutagenesis 2011; 26(3):431-5.

Dressman HK, Muranato GG, Chao NJ, Meadow S, Marshall D, Ginsburg GS, et al. Gene expression signatures that predict radiation exposure in mice and humans. Plos Med 2007;4 (4):e106.

Fuchs E. Scratching the surface of skin development. Nature 2007; 445(7130):834-42.

Acosta AE, Hernández JM. Consecuencias Fisiológicas de la oxidación de proteínas por carbonilación en diversos sistemas biológicos. Rev Esp CQB 2006; 001(9):43-4.

Cadet J, Douki T. Oxidatively Generated Damage to DNA by UVA Radiation in Cells and Human Skin. J Inve Derm. 2011; 131:1005-7.

Ferramola de Sancovich AM, Sancovich HA. Interacciones de las radiaciones electromagnéticas y especies reactivas del oxígeno sobre la piel. Rev.argent. dermatol. 2008; 87(2): 113-20.

Jones DP. Radical-free Biology of Oxidative Stress. Am J Physiol Cell Physiol 2008; 295:849- 68.

Bayir H, Kagan VE. Bench to bedside review: mitochondrial injury, oxidative stress and apoptosis-there is nothing more practical than a good theory. Critical care 2008; 12(1):206

Zhao W, Diz DI, Robbins ME. Oxidative damage pathways in relation to normal tissue injury. Br J Radiol 2007; 80(1):S23-31.

Hopewell JW. The skin: its structure and response to ionizing radiation. Int. J. Radiat.Biol. 1990; 57 (4):751-73.

Lee YS, Choi DK, Kim CD, IM M, Mollan ML, Jang JY, et al. Expression profiling of radiation-induced genes in radiodermatitis of hairless mice. Br J Dermatol 2006;154(5):829-38.

Naruke Y, Nakashima M, Suzuki K, Kondo H, Hayashi T, Soda M, et al. Genomic instability in the epidermis induce by atomic bom (a –bom) radiation. Cancer 2009;115:3782-90.

Müller K, Meineke V. Advances in the management of localized radiation injuries. Health Phys.2010; 98(6):843-50.

Wan J, Boerma M, Fu Q, Hauser-Jensen M. Radiation responses in skin and connective tissue: effect on wound healing and surgical outcome. Hernia 2006; 10:502-6.

Delanian S, Lefaix JL. Current management for late normal tissue injury: radiation-induce fibrosis and necrosis. Semin Radiat Oncol 2007; 17:99-107.

Kiang Jg, Lynnette HC, Mog SR, Elliott TB, Pellmar TC, Ledney GD. Wound trauma increase radiation-induce mortality by activiation of iNOS pathway and elevation of cytokine concentrations and bacterial infections. Rad Research 2010; 173: 319-32.

Kawase Y, Ynagi Y, Takato T, Fujimoto M, Okochi H. Characterization of multipotente adult stem cells from the skin: transforming growth factor-beta (TGF-beta) facilitates cell growth. Exp Cell Res. 2004; 295:194-203.

Messerschmidt O. Whole-body irradiation plus skin wound: animal experiments on combined injuries. Br J Radiol Suppl. 1986; 19: 64-7.

Vanaja K, Young CYF. Tindall DJ. Oxidative Stress and DNA Methylation in Prostate Cancer. Obst. and Gyn Intern 2010;10: 1-14.

Agarwal A, Gupta S, Sharma R. Oxidative stress and its implications in female infertility - a clinician’s perspective. Biomed Online 2005; 11(5):641-50.

Mettler FA, Bhargavan M, Faulkner K, Gilley DB, Gray JE, Ibbot GS, et al. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources--1950-2007. Radiology 2009; 253 (2):520-31.

Lehmann AR. The Xeroderm Pigmentosum group D (XPD) gene: one gene, two functions, threes diseases Genes Dev. 2001; 15:15-23.

Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 2008; 295(4):C849-68.

Mettler FA Jr, Gus'kova AK, Gusev I. Health effects in those with acute radiation sickness from the Chernobyl accident. Healt Phys 2007; 93(5):462-9.

Belyi DB, Kovalenko A, Bazyka D, Bebeshko V. Non-cancer effectos in acute radiation syndrome survivors in Ukraine. Health Phys 2010; 98(6):876-84.

Donnelly EH, Nemhauser JB, Smith JM, Kazzi ZN, Farfán EV, Chang AS, et al. Acute radiation syndrome: assessment and management. Southerns Med Journal 2010; 103(6):541-4.

Dauer LT, Zanzonico P, Tuttle RM, Quinn DM, Strauss HW. The Japanese Tsunami and Resulting Nuclear Emergency at the Fukushima Daiichi Power Facility: Technical, Radiologic, and Response Perspectives. J Nucl Med 2011; 52(9):1-10.

Dennis N. Fukushima Begins 30-Year Odyssey in Radiation Health. Science 2011; 333(6043): 684-5.

Scott BR. Low-dose-radiation stimulate natural chemical and biological protection against lung cancer. Dose Response 2008; 6(3):299-318.

Gottlöber P, Krähn G, Peter RU. Cutaneos radiation syndrome: clinical features, diagnosis and therapy. Hautarzt 2000; 51:567-74.

Owens P, Engelking E, Han G, Haeger SM, Wang XJ. Epidermal Smad4 deletion results in aberrant wound healing. Am J Pathol 2010; 176:122-33.

Anscher MS, Vujaskovic Z. Mechanism and potencial targets for prevention and treatment of normal tissue injury after radiation theraphy. Semin Oncol 2005; 32(suppl 3):S86-S91.

Robbins MEC, Zhao W. Chronic oxidative stress and radiation-induce late normal tissue injury: A review. Int J Radiat Biol. 2004; 80:251-9.

Moulder JE, Cohen EP. Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin Radiat Oncol. 2007; 17(2):141-8.

Day BL. Catalytic antioxidants: a radical approach to new therapeutics. Drug Discov Today 2004; 9(13):557-66.

Lü Jm, Lin PH, Yao Q, Chen C. Chemical and molecular mechanism of antioxidants: experimental approaches and model system. J Cell Mol Me. 2010; 14(4):840-60.

Aréchiga CF, Ealy AD, Hansen PJ. Evidence That Glutathione Is Involved in Thermotolerance of Preimplantation Murine Embryos. Biol of Reprod. 195; 52:1296-301.

Rabbani ZN. Anscher MS, Folz RJ. Overexpression of extracelular superoxide dismutase reduce acute radiation induced lung toxicity. BMC Cancer 2005; 5:59.

Doctrow SR, Baudry M, Huffman K, Malfroy B, Melov S. Salen MN complexes: Multifunctional catalytic Antioxidants Protective in Models for Neurodegeneratives Diseases of Aging. En: Medicinal Inorganic Chemistry. USA: American Chemical Society; 2005. p. 319-47.

Lefaix JL, Delanian S, Leplat JJ. Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: An experimental study. Int J Radiat Oncol Biol Phys. 1996; 35:305-12.

Moulder JE, Cohen EC. Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin Radiat Oncol. 2007; 17:141-8.

Rosenthal RA, Fish B, Hill RP, Huffman KD, Lazarova Z, Mahmood J, et al. Salen Mn Complex Mitigate Radiation Injury in Normal Tissues. Anticancer Agents Med Chem. 2011; 11(4):359-72.

Zhou M, Baudry M. EUK-207, a superoxide dismutase/catalase mimetic, is neuroprotective against oxygen/glucose deprivation-induced neuronal death in cultured hippocampal slices. Brain Res. 2009; 1247:28-37.

Jourdan MM, López A, Olasz EB, Duncan NE, Demara M, Kittinpongdaja W, et al. Laminin 332 deposition is diminished in irradiated skin in an animal model of combined radiation and wound skin injury. Radiat Res. 2011;176:636-48.

Moulder JE & Cohen EP. Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin Radiat Oncol. 2007; 17:141-8.

Frank S, Kämpfer H, Podda M, Kaufmann R, Pfeilschifter J. Identification of copper/zinc superoxide dismutase as a nitric oxide-regulated gene in human (HaCaT) keratinocytes: implications for keratinocyte proliferation. Biochem J. 2000; 15(346) Pt 3:719-28.

Meineke VM, Müeller K, Roland R, Cordes N, Köhn FM, Mayerhofer A, et al. Development and evaluation of a skin organ model for the analysis of radiation effects. Strhlenther Onko. 2004; 180 (2):102-8.

Murley JS, Kataoka Y, Hallahan DE, Roberts JC, Grdina DJ. Activation of NFkB and MnSOD gene expression by free radical scavenger in human microvascular endothelial cell. Radl Biol & Med. 2001; 30(12):1426-39.

Zhao Y, Chaiswing L, Oberley TD, Batinic-Haberle I, St Clair W, Epstein CJ, et al. A Mechanism-based antioxidant approach for the reduction of skin carcinogenesis. Cancer Res. 2005; 15:65(4)54: 1401-15.

Rosenthal RA, Fish B, Hill RP, Huffman KD, Lazarova Z, Mahmood J, Medhora M, Molthen R, Moulder JE, Sonis ST, Tofilon PJ & Doctrow SR. 2011. Salen Mn complexes mitigate radiation injury in normal tissues. Anticancer Agents Med Chem. 2011;11:359-72.

Descargas

Publicado

2012-06-01

Cómo citar

López, A., Aréchiga, C., Bañuelos, R., Barboza, O., Sanchez, S., & Lazarova, Z. (2012). Impacto del estrés oxidativo sobre las lesiones cutáneas causadas por radiaciones ionizantes. Memorias Del Instituto De Investigaciones En Ciencias De La Salud, 10(1). Recuperado a partir de https://revistascientificas.una.py/index.php/RIIC/article/view/1725

Número

Sección

Tema de actualidad

Artículos similares

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

También puede {advancedSearchLink} para este artículo.