Ensayo de inhibición en medio líquido con placa multipocillo de bacterias ácido lácticas aisladas de leche cruda y queso Paraguay contra Listeria monocytogenes
DOI:
https://doi.org/10.18004/rcfacen.2024.15.1.050%20Palabras clave:
BAL, lácteos, bioconservación, antimicrobianos, bacteriocinas, patógenosResumen
Las bacterias ácido lácticas (BAL) son microorganismos generalmente considerados como seguros y poseen una gran capacidad para la bioconservación. Como agentes bioconservantes, las BAL pueden aplicarse como cultivos viables para la producción de compuestos antimicrobianos o explotando agentes químicos. Las BAL son conocidas por la producción de una variedad de compuestos antagónicos, entre ellos la bacteriocinas, y su potencial antimicrobiano está definido por la acción combinada de los metabolitos sobre bacterias no deseadas. En este trabajo se evalúa la actividad antimicrobiana de 7 cepas de BAL aisladas de leche cruda y queso Paraguay: Enterococcus faecium (M6A y M6B), Lactobacillus fermentum (M16A y M17A), Lactobacillus rhamnosus (M17B) y Lactobacillus plantarum (M18 y M21) frente a E. coli, S. aureus y L. monocytogenes.
Descargas
Citas
Alvarez-Sieiro, P., Montalbán-López, M., Mu, D. & Kuipers, O.P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology, 100(7): 2939–2951.
Aymerich, T., Holo, H., Håvarstein, L.S., Hugas, M., Garriga, M. & Nes, I.F. (1996). Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Applied and Environmental Microbiology, 62(5): 1676–1682. Borrero, J., Kelly, E., O’Connor, P.M., Kelleher, P., Scully, C., Cotter, P.D., Mahony, J. & Sinderen, D. van. (2018). Plantaricyclin: a Novel Circular Bacteriocin Produced by
Lactobacillus plantarum NI326: Purification, Characterization, and Heterologous Production. Applied and Environmental Microbiology, 84(1) e01801-17: 1–10.
Casaus, P., Nilsen, T., Cintas, L.M., Nes, I.F., Hernández, P.E. & Holo, H. (1997). Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology, 143(7): 2287–2294.
Cintas, L.M., Casaus, P., Håvarstein, L.S., Hernández, P.E. & Nes, I.F. (1997). Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Applied and Environmental Microbiology, 63(11): 4321–4330.
Cintas, L.M., Casaus, P., Holo, H., Hernandez, P.E., Nes, I.F. & Håvarstein, L.S. (1998). Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. Journal of Bacteriology, 180(8): 1988–1994.
Cotter, P.D., Hill, C. & Ross, R.P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3(10): 777–788.
da Silva Sabo, S., Vitolo, M., González, J.M.D. & Oliveira, R.P.S. (2014). Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International, 64: 527–536.
Delves-Broughton, J., Blackburn, P., Evans, R.J. & Hugenholtz, J. (1996). Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek, 69(2): 193–202.
Devlieghere, F., Vermeiren, L. & Debevere, J. (2004). New preservation technologies: Possibilities and limitations. International Dairy Journal, 14(4): 273–285.
Dušková, M., Šedo, O., Kšicová, K., Zdráhal, Z. & Karpíšková, R. (2012). Identification of lactobacilli isolated from food by genotypic methods and MALDI-TOF MS. International Journal of Food Microbiology, 159(2): 107–114.
Fernandes, P., Loureiro, D., Monteiro, V., Ramos, C., Nero, L.A., Todorov, S.D. & Guerreiro, J.S. (2017). Lactobacillus plantarum isolated from cheese: production and partial characterization of bacteriocin B391. Annals of Microbiology, 67(6): 433–442.
Field, D., Ross, R.P. & Hill, C. (2018). Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Current Opinion in Food Science, 20: 1–6.
Gálvez, A., Abriouel, H., Benomar, N. & Lucas, R. (2010). Microbial antagonists to food-borne pathogens and biocontrol. Current Opinion in Biotechnology, 21(2): 142–148.
Gálvez, A., Abriouel, H., López, R.L. & Omar, N.B. (2007). Bacteriocin-based strategies for food
biopreservation. International Journal of Food Microbiology, 120(1): 51–70.
Gellert, G., Stommel, A. & Trujillano, A.B. (1999). Development of an optimal bacterial medium based on the growth inhibition assay with Vibrio fischeri. Chemosphere, 39(3): 467–476.
Khan, H., Flint, S. & Yu, P.L. (2010). Enterocins in food preservation. International Journal of Food Microbiology, 141(1): 1–10.
Lash, B.W., Mysliwiec, T.H. & Gourama, H. (2005). Detection and partial characterization of a broad-range bacteriocin produced by Lactobacillus plantarum (ATCC 8014).
Food Microbiology, 22(2): 199–204. Ming, L., Zhang, Q., Yang, L. & Huang, J.A. (2015). Comparison of antibacterial effects between antimicrobial peptide and bacteriocins isolated from Lactobacillus plantarum on three common pathogenic bacteria. International Journal of Clinical and Experimental Medicine, 8(4): 5806–5811.
Pascual, L.M., Daniele, M.B., Giordano, W., Pájaro, M.C. & Barberis, I.L. (2008). Purification and partial characterization of novel bacteriocin L23 Produced by Lactobacillus fermentum L23. Current Microbiology, 56(4): 397–402.
Sabatini, N. (2010). A Comparison of the volatile compounds, in Spanish-style, Greek-style and Castelvetrano-style Green Olives of the Nocellara del Belice Cultivar. Pp. 219–231, in Preedy, V.R. & Watson, R.R. (Eds.). Olives and Olive Oil in Health and Disease Prevention. Amsterdam: Elsevier. xxxix + 1479 pp.
Sabia, C., Anacarso, I., Bergonzini, A., Gargiulo, R., Sarti, M., Condò, C., Messi, P., de Niederhausern, S., Iseppi, R. & Bondi, M. (2014). Detection and partial characterization of a bacteriocin-like substance produced by Lactobacillus fermentum CS57 isolated from human vaginal secretions. Anaerobe, 26: 41–45.
Salomskiene, J., Jonkuviene, D., Macioniene, I., Abraitiene, A., Zeime, J., Repeckiene, J. & Vaiciulyte-Funk, L. (2019). Differences in the occurence and efficiency of antimicrobial compounds produced by lactic acid bacteria. European Food Research and Technology, 245(3): 569–579.
Todorov, S.D., Holzapfel, W. & Nero, L.A. (2016). Characterization of a novel bacteriocin produced by Lactobacillus plantarum ST8SH and some aspects of its mode of action. Annals of Microbiology, 66(3): 949–962.
Wen, L.S., Philip, K., & Ajam, N. (2016). Purification, characterization and mode of action of plantaricin K25 produced by Lactobacillus plantarum. Food Control, 60: 430–439.
Woraprayote, W., Malila, Y., Sorapukdee, S., Swetwiwathana, A., Benjakul, S. & Visessanguan, W. (2016). Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Science, 120: 118–132.
Yan, T.R. & Lee, C.S. (1997). Characterization of a partially purified bacteriocin, Fermentcin B, from Lactobacillus fermentum. Biotechnology Letters, 19(8): 741–744.
Zacharof, M.P. & Lovitt, R.W. (2012). Bacteriocins Produced by Lactic Acid Bacteria a Review
Article. APCBEE Procedia, 2: 50–56.
Zhang, J., Yang, Y., Yang, H., Bu, Y., Yi, H., Zhang, L., Han, X. & Ai, L. (2018). Purification and partial characterization of bacteriocin Lac-B23, a novel bacteriocin production by Lactobacillus plantarum J23, isolated from chinese traditional fermented milk. Frontiers in Microbiology, 9(2165): 1–7.
Zimina, М.I., Sukhih, S.A., Babich, O.O., Noskova, S. Yu., Abrashina, A.A. & Prosekov, A.Y. (2016). Investigating antibiotic activity of the genus Bacillus strains and properties of their bacteriocins in order to develop next generation pharmaceuticals. Food and Raw Materials, 4(2): 92–100.