ARTÍCULO ORIGINAL

LAS AGUAS DEL LAGO YPACARAÍ ANÁLISIS A TRAVÉS DE BIOINDICADORES¹

PHYSICAL, CHEMICAL AND BIOLOGICAL STATUS OF THE YPACARAÍ LAKE¹

Andrea Weiler²

Karina Núñez²

Katia Airaldi²

Andrea Caballero²

Frederick Bauer^{2 3}

Melissa Dos Santos²

Diego Bueno²

Alberto Carosini²

Romina Cardozo²

Pastor Pérez4

¹ Trabajo presentado por la Facultad de Ciencias Exactas y Naturales y financiado por el Rectorado de la Universidad Nacional de Asunción durante el año 2013.

² Docentes del Departamento de Biología, Facultad de Ciencias Exactas y Naturales.

³ Museo Nacional de Historia Natural del Paraguay, Secretaria del Ambiente.

⁴ Asociación Guyra Paraguay.

RESUMEN

on el objetivo de analizar el estado actual del Lago Ypacaraí desde el punto de vista físico-químico y biológico, se estudiaron las comunidades de plancton (algas y zooplancton), peces, anfibios, reptiles y aves. Se realizaron campañas de muestreo de mayo a noviembre y los resultados fueron relacionados con los parámetros físico-químicos tomados. Los valores de DBO, fósforo total y nitrógeno total fueron altos. Se registraron 92 especies de algas, incluyendo algas verde-azuladas. El zooplancto n se encontró dominado por crustáceos (Cyclopoida), con abundancia de 25 a 216 organismos por litro. Se colectaron 55 especies de peces, 17 especies de anfibios, 6 especies de reptiles y 85 especies de aves. Algunos de estos registros representan nuevos de datos de distribución para las especies. El Lago Ypacaraí presenta características de laguna eutrófica, con alta biodiversidad. Se requiere mayor esfuerzo de muestreo sostenido a lo largo del tiempo para una mayor comprensión de los procesos biológicos de este ecosistema.

PALABRAS CLAVE: Anfibios, Aves, Biodiversidad, Lago Ypacaraí, Parámetros Físico-Químicos, Peces, Plancton, Reptiles, Vertebrados.

ABSTRACT

The main objective of this study was to analyze the physical, chemical and biological status of the Ypacaraí Lake. Samples of the plankton communities (algae and zooplankton), fish, am-

phibians, reptiles and birds were taken. Campaigns were conducted from May to November and the results related to the physicochemical parameters taken. The values of BOD, total phosphorus and total nitrogen were high. A total of 92 algal species were recorded, including blue-green algae. Zooplankton was found dominated by crustaceans (Cyclopoida), with 25-216 organisms per liter. We collected 55 species of fish, 17 species of amphibians, 6 species of reptiles and 85 species of birds were observed. Some of these records represent new data for species distribution. Ypacarai Lake presents characteristics of an eutrophic lagoon with high biodiversity. Higher sampling effort sustained over time is required for a greater understanding of the biological processes of this ecosystem.

KEY WORDS: Amphibians, Birds, Biodiversity, Ypacarai Lake, Physicochemical Parameters, Fish, Plankton, Reptiles, Vertebrates.

INTRODUCCIÓN

El lago Ypacaraí es un embalse natural formado como consecuencia de actividades tectónicas que produjeron una falla con dirección Noreste-Sureste. En la parte más profunda de esta falla se ubica el Lago Ypacaraí. Así, el lago Ypacaraí recibe las descargas de toda su cuenca y la canaliza hacia el Río Paraguay, a través del Río Salado. El sistema Lago Ypacaraí y sus cuencas abarcan 1.109 Km², de los cuales 335,21 Km² (32%) pertenecen a las sub-cuencas de Pirayú, 61,17 Km² (5,51%) son de la Costa Este,

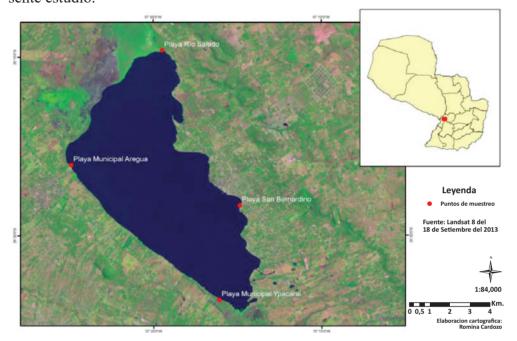
74,31 Km² (6,70%) pertenecen a la Costa Oeste, 350,62 Km² (31,61%) de la sub-cuenca del Yuquyry, 212,15 Km² (19,12%) del Salado y 5,06 Km² (0,45%) al Lago Ypacarai propiamente dicho. Todas las sub-cuencas mencionadas son afluentes del lago, excepto la del Salado, que es su efluente. Debido a estas características el "Lago Ypacaraí" presenta un comportamiento híbrido "laguna-río" (González,1981).

La situación ambiental así como la biodiversidad de la Cuenca del Lago Ypacaraí, ha sido estudiada en varios proyectos de investigación. Los trabajos aportados por González Romero, incluyeron las áreas de la ecología, limnología, geología y zoología principalmente (González, 1981, 1985; Ritterbusch, 1988). Facetti (2004), elaboró un libro acerca del Estado Ambiental del Paraguay, en el que se menciona entre otros temas, estudios de caso acerca del Lago Ypacaraí, y zona de influencia, entre ellos el proceso de eutrofización y calidad microbiológica del lago.

Salas et. al. (2004), presentaron un trabajo en el que describen a los humedales del Paraguay, haciendo mención a las características del Lago Ypacaraí. La Fundación Moisés Bertoni (2007), en su trabajo Biodiversidad del Paraguay, mencionó los principales problemas relacionados con los recursos hídricos del país, entre ellos la Cuenca del Lago Ypacaraí. Entre otros trabajos relacionados al Lago Ypacaraí, Franco et. al. (2004, 2006) evaluaron los efectos citotóxicos y genotóxicos de las aguas del Lago

Ypacaraí. Insaurralde (2010), publica una lista de 71 especies de peces del Lago Ypacaraí, comprendidos en los órdenes Siluriformes, Characiformes, Perciformes, Gymnotiformes, Clupeiformes, Rajiformes y Beloniformes. Bauer et. al., (2010) presentaron un listado preliminar de anfibios de Ypacaraí, de un área cercana al Lago Ypacaraí, en la que registraron 17 especies.

Con respecto a la flora hidrofítica, Mereles presentó una contribución en 1982. Más adelante, Mereles et. al., (1992), elaboraron una breve reseña sobre la vegetación de los humedales en el Paraguay, en el cual describen a los humedales del Lago Ypacaraí como una zona muy alterada por la presencia humana, y consta de una vegetación heterogénea relacionada con el agua, con selvas de ribera, sabanas hidromórficas y tampones de vegetación acuática.


El objetivo de este trabajo es analizar el estado actual del Lago Ypacaraí desde el punto de vista físico-químico y biológico, estudiando las comunidades de plancton (algas y zooplancton), peces, anfibios, reptiles y aves, y analizando la diversidad en comparación con estudios anteriores.

MATERIALES Y MÉTODOS

Área de estudio

Los puntos de muestreo fueron cuatro playas del Lago Ypacaraí: playa municipal de Areguá, playa municipal de Ypacaraí, playa en la ciudad de San Bernardino y la playa próxima a la confluencia del Lago Ypacaraí con el Río Salado, en una zona conocida como Ciervo-cuá (Figura 1). Estos puntos fueron seleccionados para establecer una comparación con los datos colectados en el trabajo "Estudio Limnológico del Lago Ypacarai" realizado entre los años 1983 al 1985 por el Instituto de Ciencias Básicas (Informe Técnico no Publicado).

Figura 1. Lago Ypacaraí. En rojo se indican los puntos de muestreo del presente estudio.

Colecta y Análisis de datos

Se realizaron tres campañas de muestreo para todos los grupos biológicos seleccionados en este estudio, en el mes de mayo, setiembre y noviembre, excepto la colecta de algas y de muestras de agua para análisis físico-químico, que se realizó en dos ocasiones, en los meses de mayo y julio. El trabajo de campo inició siempre al atardecer prolongándose por aproximadamente 3 horas, en cada punto de muestreo. Se formaron dos grupos de investigadores, trabajando en simultáneo. Adicionalmente, para estudiar las comunidades de aves, se realizaron

dos salidas adicionales en cada punto de muestreo en los meses de abril y octubre, registrándose los datos en las primeras horas de la mañana.

Para la toma de muestras de algas, se colectaron 250 ml de muestra cruda por cada punto de muestreo establecido. Cada una de las muestras fueron conservadas con 0,5 ml de formaldehido al 2,5% y mantenidas a una temperatura de aproximadamente 8°C. Para obtener resultados cuantitativos se observaron al microscopio óptico Olympus BH-02 1 ml de la muestra cruda bien homogeneizada para Chlorophytas por un lado y no Chlorophy-

tas por otro (Crysophyta, Cyanophyta y Euglenophyta). Para el análisis de no Chlorophytas las muestras fueron fijadas en láminas permanentes. En el caso de las Chlorophytas se realizó conteos directos de las muestras sin fijación.

Para recoger muestras de zooplancton se utilizó una red con malla de 55 μm por la que se filtraron 50 litros de agua subsuperficial, tomadas a no menos de 6 metros de la orilla, utilizando un balde de 10 litros de capacidad. Las muestras fueron concentradas en 20 ml y fijadas en formol 5%. Se realizó un análisis cuali-cuantitativo de las muestras, utilizando un microscopio estereoscópico con aumento de 25X y 40X.

Para el análisis cuantitativo, se colocó cada muestra en una placa de petri cuadrangular de 100 x 15 mm, con grillas de 13 mm y se procedió al conteo de los individuos presentes en el 25% de cada muestra, expresadas en número de organismos por litro. Para el análisis cualitativo las muestras fueron observadas en su totalidad.

Las determinaciones taxonómicas se basaron en Streble y Krauter (1987). Las muestras que por exceso de materia orgánica no pudieron ser evaluadas cuantitativamente, fueron analizadas cualitativamente con aproximación de abundancia.

Para la colecta de peces, se utilizaron redes de arrastre y redes de captura manual. El fijador utilizado fue formol 10%. Los ejemplares se identificaron

siguiendo a Géry (1977), Géry et. al. (1987), Da Graça et. al. (2007), Britski et.al. (2007), Neris et al. (2010) Neris et.al. (2008) y Villalba et. al. (2012). Los anfibios fueron localizados por medio de búsqueda activa, y por la metodología propuesta por Heyer et. al. (1994) denominada Relevamientos por Encuentros Visuales (REV) y Relevamientos de Lugares de Reproducción. Los especímenes fueron capturados manualmente y acondicionados en bolsas de plásticos transparentes con un puñado de vegetación para mantener el ambiente húmedo, evitando que mueran deshidratados. Los anfibios fueron sacrificados con inmersión en alcohol 20% y fijados con formol 10%.

Los ejemplares fueron identificados siguiendo a Weiler et. al. (2013). Del mismo modo, se realizó el muestreo de reptiles, realizando búsqueda activa en todos los microhábitats disponibles, como troncos, huecos en árboles, maderas y piedras apiladas, etc. Los ejemplares fueron identificados siguiendo a Cacciali (2009) y Carreira et. al. (2005).

El muestreo de aves se realizó por observación visual directa, mediante el uso de binoculares y por reconocimiento de cantos. Se registraron todas las especies vistas u oídas. Para la identificación de aves se siguió a Elsam (2006) y Narosky e Yzurieta (2006). Todos los datos recolectados fueron procesados en el Laboratorio de la Colección Zoológica de la Facultad de Ciencias Exactas y Naturales y en el Museo Nacional de Historia

Natural del Paraguay, donde fueron depositados los ejemplares de peces. Los resultados en cuanto a composición y riqueza de especies fueron analizados y comparados con datos de trabajos anteriores.

RESULTADOS Y DISCUSIÓN

Ambiente físico-químico

Los datos físico-químicos del agua fueron proveídos por el Laboratorio de Calidad de Aguas de la FACEN en el marco del proyecto del Lago Ypacaraí en el año 2013 (Cuadro 1). El fósforo es uno de los nutrientes que rige la productividad de lagos y lagunas. Según Wetzel (1975) lagos o lagunas con cantidad de fósforo total que excedan los 30 µg/l son considerados eutróficos y con valores superiores a 100 µg/l son hipereutróficos. Las fuentes de adición de fósforo más importantes son la agricultura y los efluentes municipales. Las consecuencias de la eutrofización se manifiestan por la ocurrencia de afloramientos algales, disminución de la transparencia, formación de espumas y colchones de algas verde-azuladas (Summerfelt, 1993).

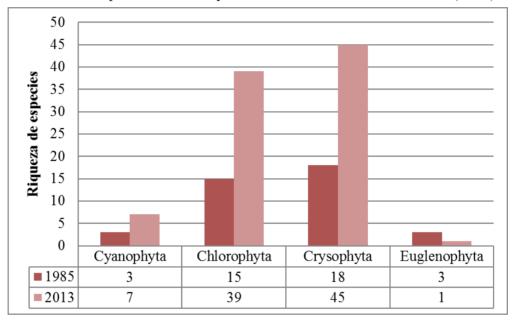
Cuadro 1. Parámetros físico-químicos de aguas del Lago Ypacaraí.

		Are	guá	Ypa	caraí	Centro o	lel Lago	San Ber	nardino
Parámetro	Unidad	may	jul	may	jul	may	jul	may	jul
Temperatura	°C	22,4	23,1	25,7	23,1	27,5	24	22,7	23,4
pН	UpH	8,21	7,90	7,76	7,8	8,81	8,48	8,8	8,54
Conductividad	μs/cm	245	225	300	180	245	195	310	205
Turbidez	UTN	28,2	37,5	31,3	12,8	21,6	9,41	20,1	8,86
Transparencia	m		0,50		0,50		0,70		0,50
MO	mg/L	7,75	8,84	9,0	11,5	7,75	9,84	9,5	9,49
DBO5	mg/L	16,2	3,6	15,6	3,8	10,8	4,4	11,7	4,6
DQO	mg/L	59,77	44,23	62,21	43,27	60,48	46,63	57,02	45,67
Fósforo Total	mg/L	0,16	0,047	0,202	0,053	0,171	0,045	0,157	0,039
NTK	mg/L	1,519	0,983	1,392	0,938	1,537	0,569	1,157	0,711
Clorofila a	mg/L	74,74	45,10	90,01	39,19	135,07	49,96	131,62	42,86
Oxígeno disuelto	mg/L	7,0	7,2	7,8	8,1	9,1	8,1	6,8	8,6

La demanda bioquímica de oxígeno proveniente de la descomposición de la materia orgánica, si es elevada, puede remover el oxígeno más rápido de lo que puede ser repuesto, causando hipoxia, factor que puede ocasionar mortandades de organismos heterótrofos de respiración acuática (Summerfelt 1993). Si bien los valores de DBO, estuvieron elevados en todos

los puntos de muestreo, en la campaña de mayo no registramos mortandades de peces ni disminución drástica del zooplancton.

Algas


Se han identificado 92 especies en cuatro grupos taxonómicos principales. De las 92 especies de algas,

7 pertenecen a las Cyanophytas, 39 son Chlorophytas, 45 Crysophytas y Euglenophyta. Chlorophytas y Crysophytas presentaron mayor número de especies, coincidiendo con lo encontrado por González Romero y colaboradores (1985). Sin embargo, en

el presente estudio se encuentra una mayor riqueza de especies (Figura 2). Los géneros predominantes en la campaña del mes de mayo fueron: Scenedesmus, Nitzschia, Aulacoseira, Microcystis, Melosira, Chlore-

lla. En la campaña del mes de julio,

Figura 2. Riqueza de especies de los grupos taxonómicos de fitoplancton encontrados en el presente estudio y en el estudio de González Romero (1985).

los géneros predominantes fueron: Microcystis, Aeruginosa, Scenedesmus, Coelosphaerium, Anabaena, Aphanizomenon, Anabaena, Ulothrix, Oedogonium, Cylindrospermopsis y Aulacoseira.

El lago Ypacaraí ha tenido en los últimos años, eventos de afloramientos repentinos de algas verde-azules, entre ellas, Microcystis, Aphanizomenon y Cylindrospermopsis. Los afloramien-

tos algales y la formación de espumas o colchones de algas verde-azuladas son típicas de lagos eutrofizados con mucha cantidad de nitrógeno y fósforo (Summerfelt, 1993). En los muestreos realizados entre mayo y julio del corriente año, si bien pudimos constatar la presencia de algas de los géneros *Microcystis, Aphanizomenon y Cylindrospermopsis*, estas no se encontraban en cantidades muy elevadas (Cuadro 2).

Cuadro 2. Algas registradas en los puntos de muestreo en diferentes meses (células/ml).

					Sa	an		
Taxa	Are	guá	_ Ÿpa	carai_	Berna	ırdino	Río S	alado
	May	Jul	May	Jul	May	Jul	May	Jul
CYANOPHYTA								
Coelosphaerium sp.	4700	1000	0	0	0	0	0	0
Microscystis aeruginosa	7560	10000	0	20000	30000	20000	0	0
Aphanizomenon sp.	0	0	10000	2000	0	0	2500	2000
Anabaena sp.	0	1000	500	5000	0	0	0	0
Anabaena oscillatarioides	0	0	0	0	460	380	0	0
Cylindrospermopsis raciborskii	0	0	0	0	230	700	0	0
Pseudoanabaena musicola	0	0	0	0	0	0	0	470
CHLOROPHYTA								
Pediastrum gracillinum	2000	100	0	0	0	0	0	0
Scenedesmus longuispina	1000	1000	0	0	0	0	400	0
Scenedesmuis acuminatus var. acuminatus	0	0	0	0	1000	1000	100	240
Scenedesmus acuminatus	1000	200	1000	0	0	0	0	0
Scenedesmus sp. 1	0	0	0	0	16	0	0	0
Scenedesmus paradoxum	0	0	0	0	1000	500	260	100
Scenedesmus quadricauda	1000	800	1000	0	2000	500	450	100
Scenedesmus pseudodenticulatus	0	0	0	0	1000	1000	0	0
Scenedesmus tropicus	1000	0	0	0	0	0	0	0
Scenedesmus opoliensis	0	0	0	0	0	0	200	100
Scenedesmus disciformis	0	500	0	0	0	500	0	0
Scenedesmus dimophus	0	500	0	0	0	0	0	0
Scenedesmus opoliensis var. mononensis	0	0	0	0	160	80	0	0
Scenedesmus intermedius	0	0	0	0	300	0	0	0
Schroederia setigera	0	0	0	0	25	0	0	0
Oedogonium sp.	0	0	1500	270	0	0	3600	3400
Coelastrum reticulatum	0	1000	500	400	4000	2000	1000	1000
Selenastrum sp.	1000	1000	0	1000	600	0	0	0
Treubaria triaptenticulata	0	0	0	0	0	500	0	0
Treubaria sp.	1000	0	0	0	0	0	0	0
Pediastrum simplex var. simplex	0	500	0	0	0	500	0	0
Pediastrum tetras	0	0	0	0	0	0	340	350
Pediastrum duplex	0	0	400	400	500	0	160	160
Pediastrum duplex var. gracillinum	0	0	250	0	0	0	0	0
Cosmarium sp. 1	0	0	0	0	2000	0	0	0
Ankistrodesmus spirilliformes	1000	430	0	0	0	0	0	0
Ankistrodesmus bernardii	0	0	0	0	75	670	0	0
Staurastrum paradoxum	0	250	570	570	0	500	0	0
Ulothrix sp.	0	0	1800	1600	0	0	400	2600

Taxa	Are	oná	Ypac	earaí	Sa Berna		Río S	alado
I MAM	May	Jul	May	Jul	May	Jul	May	Jul
Eutetramorus fotti	0	0	0	0	8	8	0	0
Lagerheimia ciliata	0	0	0	0	6	0	0	0
Treubaria shmidlei	0	0	0	0	400	0	0	0
Golenkinia solitaria	0	500	0	0	0	0	0	0
Spyrogira sp.	0	0	1000	1000	0	0	0	0
Spyrogira vulgaris	0	0	0	0	0	0	1200	1000
Staurastrum sp.	0	0	1000	0	0	0	0	0
Closterium sp.	0	0	0	0	0	0	500	500
Chlorella vulgaris	1000	600	0	0	5000	5000	1000	1500
Chloroccocum sp. 1	0	0	0	0	200	450	580	600
CRYSOPHYTA								
Achnantes sp.	0	0	0	0	0	500	0	0
Navicula crytocephala	575	0	0	0	0	0	0	0
Navicula pseudobrebisonii	35	70	0	0	0	0	0	0
Eunotia sp.	25	0	0	0	0	0	0	0
Brachysira kuntzei	0	0	0	0	0	0	50	180
Aulacoseira ambigua	0	0	0	0	0	0	500	250
Aulacoseira valida	0	0	0	0	0	0	150	0
Aulacoseira granulata	45	5000	425	2000	5000	3000	4000	3200
Nitzschia subacicularis	53	100	10	10	0	0	0	0
Nitzschia semirobusta	50	0	15	80	0	0	0	0
Melosira granulata	3600	2000	3150	2800	0	0	750	750
Melosira varians	0	0	540	550	8	0	0	0
Synedra ulna	0	0	256	800	0	500	0	0
Nitzschia intermedia	0	0	45	60	35	35	0	0
Eunotia meridiana	0	0	16	16	0	0	0	0
Naviculadicta sp.	0	0	70	125	0	0	0	0
Placoneis symmetrica	0	0	30	0	0	0	0	0
Gomphonema sp. 1	0	0	45	20	0	0	0	0
Gomphonema augur	0	0	0	0	0	0	100	60
Gomphonema augur var. sphaerophorum	0	0	33	20	0	0	0	0
Gomphonema stonei	0	0	0	0	0	0	340	85
Gomphonema perapicatum	0	0	60	130	0	0	0	0
Gomphonema sp. 2	0	0	15	0	0	0	0	0
Gomphonema sp. 3	0	0	15	15	0	0	0	0
Fragilariforma stevensonii	0	0	0	0	0	0	150	80
Nitzschia dissipata	0	0	0	0	0	0	100	0
Nitzschia paleaeformis	0	0	0	0	0	0	230	250
Nitzschia granulata var. hialina	0	0	30	45	0	0	0	0
Nitzschia bilobata var. ambigua	0	0	25	45	0	0	0	0
Nitzschia frustulum	0	0	0	0	0	0	80	50

Taxa	Are	guá	Ypac	caraí	Sa Berna		Río Sa	alado
	May	Jul	May	Jul	May	Jul	May	Jul
Nitzchia vitrea var. vitrea	0	0	15	15	0	0	0	0
Nitzschia fontícola	0	0	0	0	0	0	160	250
Nitzschia tenuis	0	0	45	45	0	0	0	0
Cymbella sp.	0	0	18	0	0	0	0	0
Cymbellopsis metzeltinni	0	0	10	10	0	0	0	0
Gomphonema sp. 4	0	0	24	0	0	0	0	0
Fragilaria capucina	0	0	1000	1000	0	0	0	0
Stauroneis anceps	0	0	500	500	0	0	0	0
Anomoneis sphaerophora	0	0	1000	1000	0	0	0	0
Stauroneis sp. 1	0	0	0	0	80	60	0	0
Cymbella prostata	0	0	0	0	0	0	80	0
Pinnularia major	0	0	0	0	0	0	70	120
Cymbella ventricosa	0	0	450	450	0	0	0	0
Nitzschia sp. 2	0	0	0	0	40	40	0	0
Nitzschia sp. 1	0	0	0	0	50	50	220	370
EUGLENOPHYTA								
Phacus sp.1	13	130	0	0	125	45	0	0

Zooplancton

La fauna zooplanctónica del Lago Ypacaraí en los sitios de muestreo estuvo representada por crustáceos, rotíferos, protozoarios representados por tecamebas, nemátodos, ácaros, anélidos e insectos representados por larvas de quironómidos (Cuadro 3).

Los crustáceos fueron el grupo predominante en todos los sitios muestreados, representados por ostrácodos, cladóceros y copépodos, siendo los copépodos (Cyclopoida) los más numerosos en todas las muestras cuantificadas.

Conde Porcuna et. al., (2004) considera al grupo de copépodos como característicos de sistemas acuáticos continentales eutróficos o salinos. En la muestra de Areguá, del mes de no-

viembre, los cladóceros representaron el 47% de los crustáceos contabilizados, siendo este el valor más alto para el grupo y cuyo género más abundante fue Moina, seguido por Ceriodaphnia y Sida, y en menor medida Daphnia y Diaphanosoma.

Las muestras de Ypacaraí y Río Salado del mes de noviembre, no pudieron ser analizadas cuantitativamente por la gran cantidad de materia orgánica presente. Sin embargo, resaltamos la abundancia de ostrácodos en la playa de Ypacaraí y la ausencia de crustáceos en la muestra del Río Salado.

Los Rotíferos representaron un pequeño porcentaje del zooplancton analizado en todos los sitios de muestreo, alcanzando un valor máximo del 5% en la muestra de Areguá del mes de noviembre. Los géneros identifi-

cados en orden de abundancia fueron Brachionus, Poliarthra y Testudinella. A diferencia de los resultados presentados en este trabajo, Garrido (2002) encontró una representación de rotíferos de hasta el 50% en la comunidad zooplanctónica para el embalse de Yacyreta. Los altos números de cladóceros y copépodos contrastada a los valores bajos de rotíferos podrían explicarse por competencia de explotación

de recursos alimenticeos compartidos o por interferencia mecánica; donde en ambos casos son los primeros los beneficiados (Conde-Porcuna et. al., 2004). En las muestras analizadas se observan explosiones poblacionales de determinados grupos, como las tecamebas (saprobias), en la campaña de mayo en el punto de muestreo "Río Salado" y los anélidos en la campaña de setiembre en el mismo punto.

Cuadro 3. Zooplancton registrado en los puntos de muestreo en diferentes meses.

Tama	Aı	reguá	i	Yp	acar	raí	Be	San rnard	ino	Río	Sala	do
Taxa	may	set	nov	may	set1	nov ¹	may	set	nov	may	set1	nov ¹
CRUSTÁCEOS	570	344	885	245			184	1329	883	2292		
ROTÍFEROS PROTOZOARIOS	14	9	51	5			2	19	7	5		
(Tecamebas) INSECTOS (Larvas de	2			17			76	34	34	391		
Chironomidae)	4			49			11	15	8			
NEMÁTODOS		1		2	X			19	26		X	x
ÁCAROS	12		6	90	X	x	25		41	7	X	x
ANÉLIDOS				26	X		15	5	18	1	xxx	
Total de Organismos	602	354	942	434			313	1421	1017	2696		
Organismos por litro	48	28	75	35			25	114	81	216		

^{1:} Debido a la gran cantidad de materia orgánica no se puede cuantificar la muestra. Se realiza análisis cualitativo con aproximación de abundancia. Parámetros de aproximación de abundancia: X Escaso; XX Abundante; XXX Muy abundante.

Así también se registraron numerosos nemátodos en San Bernardino en las campañas de setiembre y noviembre y de ácaros en la campaña de mayo en Ypacaraí. Estos valores son temporales, ya que en las siguientes campañas mostraron fluctuaciones a lo largo de los meses de muestreo, por lo que es difícil extraer conclusiones. Se requiere mayor esfuerzo de muestreo sostenido a lo largo del tiempo, para tener una comprensión más acabada de los procesos ecológicos.

Peces

Se colectaron un total de 55 especies pertenecientes a 22 familias y 9 órdenes (Cuadro 4). En las campañas de los meses de setiembre y principalmente de noviembre se colectaron ejemplares juveniles de varias especies. Trabajos previos de la ictiofauna del Lago Ypacaraí realizados por González Romero (1981) y Ritterbusch (1988) encontraron una riqueza de 23 especies. Recientemente, Insaurralde (2010)

Cuadro 4. Peces registrados en los puntos de muestreo en diferentes meses.

									San				
		Aı	regu	á	Yp	acar	aí		nard	ino	Río	Sala	ıdo
	Taxón (Orden, Familia, Especie)	nay	set	nov	nay	set	nov	may	set	n0v	may	set	n0v
	Orden Myliobatiformes Familia Potamotrygonidae	=	<u> </u>	п	_=	<u> </u>	п	_=	<u> </u>	_ =	=	<u> </u>	=
1	Potamotrygon motoro ^{a, b} Orden Clupeiformes Familia Pristigasteridae										X		
2	Pellona flavipinnis ^{a, b} Familia Engraulididae		X		X								
	Lycengraulis aff. grossidens b Orden Characiformes Familia Characidae	х	X		X	X	X	X		X		X	
4	Astyanax asuncionensis a*, b*	X	X	X	X	X	X	X	X	X	X	X	X
5	Astyanax aff. fasciatus b*					X			X				
	Astyanax sp. a, b										X		
	Bryconamericus sp.			X									
8	Gymnocorymbus ternetzi ^b											X	
9	Moenkausia cf. Dichroura ^b				X			X					x
10	Triportheus paranensis a, b										X	X	
11	Triportheus sp.			X			X	X		X			
	Subfamilia Aphyocharacinae												
	Aphyocharax anisitsi Aphyocharax sp.	X		X	X	X			X	X		X	X X
	Subfamilia Cheirodontinae												
14	Odontostilbe sp.											X	
	Subfamilia Characinae												
	Roeboides cf. paranensis b* Roeboides sp.				X						37		
	Charax leticiae (= C. gibbosus)								X		X		
	Charax sp.				X				Λ				
	Familia Acestrorhynchidae												
19	Acestrorhynchus altus b*								X	X			
	Familia Gasteropelecidae												
20	Thoracocharax stellatus ^{a, b} Familia Curimatidae	X	X	X	X		X	X		X	X	X	х
21	Steindachnerina brevipinna ^b	X		X								X	x
	Familia Prochilodontidae												
22	Prochilodus sp. a, b		X									X	

		Aı	regu	á	Yp	acar	aí		San nardi	ino	Río	Sala	ido
	Taxón (Orden, Familia, Especie)	may	set	nov	may	set	nov	may	set	nov	may	set	nov
	Familia Lebiasinidae					•2			•2			•	
23	Pyrrhulina sp. ^b	X						_					
	Familia Erythrinidae							_					
24	Hoplias malabaricus ^{a, b}			X									X
	Orden Gymnotiformes												
	Familia Sternopygidae			-									4
25	Eigenmannia trilineata										X		
	Orden Siluriformes												
26	Familia Heptapteridae												
	Rhamdia sp. b											X	
27	Pimelodella aff. Gracilis a*, b												X
20	Familia Callichthyidae												
	Callichthys callichthys b				X								
	Hoplosternum sp. b						X						
	Callichtyidae indet. b*	X											
31	Corydoras aeneus ^{a*}											X	X
	Familia Loricariidae												
	Subfamilia Loricariinae												
32	Rineloricaria aff. parva ^b			X				X	X	X	X		
	Loricariichthys sp. b					X							
34	Loricaria sp. ^{a, b}			X									X
35	Loricariinae indet. b*						X						X
	Subfamilia Hypoptopomatinae												
36	Hypoptopoma inexpectatum b*							X					
37	Otocinclus sp.			X			X						
	Familia Hypostominae												
38	Pterygophlichtys anisitsi ^b	X		X			X			X			X
39	Hypostomus boulengeri b*			X									
40	Hypostomus commersoni b*		X					_					
41	Hypostomus sp. a, b*	X		X							X		X
	Orden Cyprinodontiformes												
	Familia Poeciliidae												
42	Poecilia reticulata	X						X					
42	Familia Rivulidae												
	Rivulus punctatus				X							**	
44	Rivulidae indet. Orden Beloniformes				X							X	X
	Orden Deminorines												

		Aı	regu	á	Yp	acai	aí		San nard	ino	Río	Sala	ado
	Taxón (Orden, Familia, Especie)	may	set	nov	may	set	nov	may	set	nov	may	set	nov
	Familia Belonidae												
45	Potamorhaphis eigenmanni							X					
46	Pseudostylorusus angusticeps						X						
	Orden Perciformes												
	Familia Scianidae												
47	Plagioscion ternetzi ^{a*, b}	X		X	X			X					
	Familia Cichlidae												
48	Gymnogeophagus balzani ^b		X	X			X	X		X			
49	Crenicichla semifasciata a*					X	X						
50	Crenicichla aff. vittata									X			
51	Bujurquina vittata		X				X	X					
52	Laetacara (?) sp.			X				X		X			
53	Cichlasoma sp.			X					X			X	X
	Orden Synbranchiformes												
	Familia Synbranchidae												
54	Synbranchus marmoratus ^a		X				X						
	Orden Pleuronectiformes												
	Familia Achiriidae												
55	Achiriidae indet.				X								X
a: (González Romero 1981; Ritterbusch 198	38		•									
b: I	nsaurralde 2010												

^{*} especies que requieren revisión del material colectado para confirmar su identificación

publica 71 especies para el Lago Ypacaraí. Sin embargo, de las 55 especies presentadas en este trabajo 20 no se encuentran registradas en los trabajos mencionados anteriormente. Además, dados los cambios taxonómicos, recomendamos una revisión cuidadosa de los ejemplares colectados y depositados en colecciones científicas a fin de confirmar la identificación.

Herpetofauna

En el presente estudio se registraron un total de 17 especies de anfibios pertenecientes a 4 familias y 1 orden; así como 6 especies de reptiles pertenecientes a 5 familias y 1 orden (Cuadro 5). En el trabajo realizado por González Romero (1981) y Ritterbusch (1988) sólo se citan 3 especies de reptiles y ninguna de anfibios. Probablemente anfibios y reptiles hayan sido registrados como datos anexos, resultados de encuentros ocasionales.

Un registro interesante es el lagarto ápodo *Ophiodes intermedius*, ya que corresponde a la primera cita para el Departamento de Cordillera, según los datos publicados en la revisión del género por Cacciali y Scott (2012). Un caso similar se presenta con el lagarto

Cuadro 5. Anfibios y reptiles registrados en los puntos de muestreo.

	Taxón (Orden, Familia,								San				
	Especie)		egua			acar		Beri	nard		Río	Sala	
	Езресіс)	may	set	nov	may	set	nov	may	set	nov	may	set	nov
	Amphibia												
	Anura												
	Bufonidae												
1	Rhinella schneideri		X	X		X			X	X		X	
	Hylidae												
2	Dendropsophus nanus		X	X	X	X	X	X		X		X	X
3	Dendropsophus minutus					X					X		
4	Hypsiboas raniceps		X	X		X	X		X			X	X
5	Lysapsus limellum				X	X	X					X	X
6	Scinax acuminatus						X						
7	Scinax fuscovarius						X					X	
8	Scinax squalirostris				X		X				X		
	Leptodactylidae												
9	Adenomera diptyx			X		X	X		X	X		X	X
10	Leptodactylus elenae		X						X				X
11	Leptodactylus fuscus												X
12	Leptodactylus latrans				X	X							
13	Leptodactylus podicipinus	X	X	X	X	X	X	X	X	X	X	X	X
14	Physalaemus albonotatus					X	X						
15	Physalaemus biligonigerus						X						
16	Pseudopaludicola boliviana						X						
	Microhylidae												
17	Elachistocleis bicolor						X						
	Reptilia												
	Squamata												
	Serpentes												
	Dipsadidae												
	Helicops leopardinus						X						
2	Sibynomorphus turgidus								X				X
	Lacertilia												
	Gekkonidae												
3	Hemidactylus mabouia								X	X			
	Anguidae												
4	Ophiodes intermedius								X	X			
	Gymnophthalmidae												
5	Colobosaura modesta								X				
	Teiidae												
6	Salvator merianae ^a												X
	species registradas en el Estudio Limn	ológico	del I	Proye	cto Ypa	acarai	. Pro	yecto d	lirigid	lo por	el Prot	Dr.	

Narciso González Romero. Una lista parcial fue publicada por la Dra. Bárbara Ritterbusch (1988).

_

Colobosaura modesta, especie citada únicamente para el Departamento de Concepción en el Paraguay.

Aves

Se registraron 85 especies de aves, de 39 familias y 15 órdenes (Cuadro 6). Comparando estos datos con el trabajo realizado por González Romero (1981) y Ritterbusch (1988), se concluye que entre ambos estudios existen 23 especies registradas en ambos trabajos, 11 especies sólo fueron registradas durante el trabajo del año 1981 y 62 especies sólo fueron registradas en el presente estudio.

Se registraron especies residentes y migratorias. En la playa de Areguá en los meses invernales se registró *Pyrocephalus rubinus* o Guyra tata

que migra desde el Sur de Argentina. En el Salado y en la playa de Ypacaraí, a partir de agosto se registraron especies migratorias australes como Tyranus savana (tijereta), Tyrannus melancholicus (suirirí real) en todos los sitios de muestreo y Progne chalybea (golondrina), estas especies migran desde el norte de Sudarmérica. Otras especies de interés registradas fueron Platalea ajaja v Phaetusa simplex en la playa Aregua, especies que se alimentan de peces y que no fueran registrada desde el 2010 (Base de datos de Biodiversidad de Guyra Paraguay, 2013). El sitio con mayor riqueza de especies fue la playa Aregua, alcanzando en un muestreo 41 especies, y la de menor riqueza corresponde a la playa de San Bernardino con apenas siete especies en un muestreo.

Cuadro 6. Aves registradas en los puntos de muestreo.

7	Taxón (Orden, Familia, Especie)	Nombre Común	Areguá	Ypacaraí	San Bernardino	Río Salado
	Aves					
	Pelecaniformes					
	Phalacrocoracidae					
1	Phalacrocorax brasilianus ^a	Mbigua	X		X	X
	Ciconiiformes					
2	Ardeidae Ardea alba ^a	Garza blanca				
						X
	Ardea cocoi ^a	Garza mora		X		
	Butorides striata ^a	Hoko'i				X
	Egretta thula ^a	Garcita blanca		X		
6	Syrigma sibilatrix ^a	Kuarahy mimbi	X	X		
	Ciconiidae					
7	Ciconia maguari ^a	Cigüeña		X		
	Threskiornithidae					
	Platalea ajaja ^a	Espátula rosada	X			
9	Plegadis chihi	Cuervillo de cañada			X	X
	Falconiformes					
10	Accipitridae Buteo magnirostris	Taguato común	v	х	х	x
	Buteogallus urubitinga	Aguila negra	X	X	Λ	Λ
	Rostrhamus sociabilis	Caracolero	X	X		
	Cathartidae					X
13	Cathartes aura ^a	Yryvu aka virai		X		
14	Coragyps atratus ^a	Yryvu hu	X		X	X
`	Falconidae	•				
15	Caracara plancus ^a	Carancho	X	X		X
16	Milvago chimachima ^a	Chimachima	X	X		X
	Gruiformes					
	Aramidae					
17	Aramus guarauna ^a	Carau	X	X		
	Rallidae					
18	Aramides ypecaha ^a	Gallineta de agua	X			X
	Charadriiformes					
	Charadriidae					
19	Vanellus chilensis ^a	Tero tero	X	X	X	X

	Taxón (Orden, Familia, Especie)	Nombre Común	Areguá	Ypacaraí	San Bernardino	Río Salado
	Jacanidae					
20	Jacana jacana ^a	Aguapeaso	X	X		X
	Recurvirostridae					
21	Himantopus melanurus	Tero real				X
	Scolopacidae					
22	Gallinago paraguaiae	Jakavere		X		
	Sternidae					
23	Phaetusa simplex	Gaviotín de agua	X	X		
	Columbiformes	_				
	Columbidae					
24	Columba livia	Paloma casera	X			X
25	Columbina picui	Tortolita picui	X			X
	Columbina talpacoti	Tortolita colorada			X	X
27	Leptotila verrauxi	Yeruti común	X	X		X
	Zenaida auriculata	Torcaza				X
	Psittaciformes					
	Psittacidae					
29	Brotogeris chiriri	Catita chiriri	X		X	
	Forpus xanthopterygius	Cotorrita aliazul	X	X	X	
	Myiopsitta monachus	Cotorrita	X		X	X
	Cuculiformes					
	Cuculidae					
32	Crotophaga ani ^a	Ano chico	X	X		X
33	Guira guira ^a	Piririta	X			X
34	Tapera naevia ^a	Chochi		X		
	Strigiformes					
	Strigidae					
35	Megascops choliba	Kavure	X		X	
	Caprimulgiformes					
	Caprimulgidae					
36	Nyctidromus albicollis	Luirivevu	X			
	Apodiformes					
	Trochilidae					
37	Chlorostilbon aureoventris	Picaflor verde	X			
38	Heliomaster furcifer	Picaflor de barbijo				X
	Trogoniformes					
	Trogonidae					
39	_	Suruku'a tata		X		
	Coraciiformes					

	Taxón (Orden, Familia, Especie)	Nombre Común	Areguá	Ypacaraí	San Bernardino	Río Salado
	Alcedinidae					
40	Ceryle torquata	Martín pescador				X
41	Chloroceryle amazona ^a	Martín pescador	X			
	Piciformes					
	Picidae					
42	Colaptes campestris ^a	Carpintero campestre	X	X		X
	Colaptes melanochloros	Tinguere		X		
	Melanerpes candidus	Carpintero blanco		X		
	Passeriformes	1				
	Dendrocolaptidae					
45	Lepidocolaptes angustirostris ^a	Chinchero chico	X	X	X	X
	Emberizidae					
46	Paroaria capitata	Cardenilla	X	X		X
	Paroaria coronata	Cardenal	X	X	X	X
	Saltator coerulescens	Havia tapyta	X			X
49	Sicalis flaveola	Jilguero	X	X	X	
	Furnariidae					
50	Certhiaxis cinnamomeus	Kurutie	X			X
51	Furnarius rufus ^a	Hornero	X	X	X	X
	Phacellodomus ruber	Espinero grande	X	X		X
53	Synallaxis albescens	Pijui	X			
	Tyrannidae	-				
54	Fluvicola albiventer	Viudita blanca	X			
55	Gubernetes jetapa	Tijereta		X		
56	Hemitriccus margaritaceiventer	Ñakyra 'i				X
57	Hymenops perspicillatus	Pico de plata		X		
58	Machetornis rixosa	Guyra kavaju	X		X	X
59	Megarynchus pitangua	Pitangua		X		
60	Pitangus sulphuratus	Pitogue	X	X	X	X
61	Pyrocephalus rubinus	Guyra pyta	X	X		
62	Tyrannus melancholicus	Suiriri guasu	X	X	X	X
63	Tyrannus savana	Tuguai jetapa		X		X
64	Xolmis irupero	Monjita blanca		X		
	Troglodytidae					
	Campylorhynchus turdinus	Ratona grande	X	X	X	
66	Donacobius atricapillus	Havia guasu	X	X		
67	Troglodytes aedon	Ratona	X	X	X	X
	Turdidae					
68	Turdus amaurochalinus	Havia korochire	X	X	X	X

	Taxón (Orden, Familia, Especie)	Nombre Común	Areguá	Ypacaraí	San Bernardino	Río Salado
69	Turdus leucomelas	Korochire moroti	X			
70	Turdus rufiventris	Korochyre pyta	X	X		X
	Mimidae					
71	Mimus saturninus	Calandria	X			
	Vireonidae					
72	Cyclarhis gujanensis	Chiviro	X	X		X
	Thamnophilidae					
73	Taraba major	Chororo	X			
74	Thamnophilus doliatus	Che oro para	X	X	X	
	Polioptilidae					
75	Polioptila dumicola	Siritui	X			
	Hirundinidae					
76	Progne chalybea	Golondrina	X		X	X
77	Progne tapera	Golondrina parda	X			
	Icteridae					
78	Agelaioides badius	Chopi pyta	X			
79	Molothrus bonariensis	Guyrau	X		X	X
80	Molothrus rufoaxillaris	Arumara	X			
	Fringillidae					
81	Carduelis magellanica	Cabecita negra	X			
	Passeridae					
82	Passer domesticus	Guyra tupao	X		X	
	Parulidae					
83	Geothlypis aequinoctialis	Arañero cara negra		X		
	Thraupidae					
84	Euphonia chlorotica	Ñandesy		X		X
85	Thraupis sayaca	Sai hovy	X		X	X
l	- •	-				

a: Especies registradas en el Estudio Limnológico del Proyecto Ypacaraí. Proyecto dirigido por el Prof. Dr. Narciso González Romero. Una lista parcial fue publicada por la Dra. Bárbara Ritterbusch (1988).

CONCLUSIONES

Los valores de fósforo y nitrógeno total condicen con los de un ambiente eutrófico. Esto se ve reflejado también en explosiones poblacionales de algunos grupos taxonómicos del plancton. Existieron coincidencias en los grupos taxonómicos más representativos de algas con el trabajo realizado por González (1985), aunque este trabajo presenta una mayor riqueza de especies.

En cuanto a vertebrados en general, si bien citamos diferencias entre el presente estudio y el de González Romero (1985), no se pudo establecer comparaciones, debido a que en dicho estudio, se registraron datos de

vertebrados en forma ocasional, sin reportarse la metodología utilizada. Mediante este estudio se contribuye al conocimiento de la diversidad de peces y aves asociadas al Lago Ypacaraí. Se registran dos localidades nuevas de distribución para lagartos.

El Lago Ypacaraí presenta características de laguna eutrófica, con alta biodiversidad. Se requiere mayor esfuerzo de muestreo sostenido a lo largo del tiempo, para un mejor conocimiento de los componentes biológicos y de las interrelaciones entre éstos y el ambiente.

Es fundamental la determinación de las fuentes contaminantes y el tratamiento de las aguas residuales en las subcuencas del Lago Ypacaraí a fin de mitigar el impacto de dichas descargas, como proceso fundamental para la recuperación de las aguas del Lago Ypacaraí.

AGRADECIMIENTOS

Agradecemos a los estudiantes que colaboraron con el trabajo de campo: Montserrat Pedrozo, Lía Romero, Gabriel Núñez, José Méndez, Adriana Castillo, Cristian Báez y José Aguilera, al Dr. Héctor Vera por acompañarnos en una de las salidas de campo, y al Lic. Julio Fretes del Laboratorio de Agua de la FACEN, por su colaboración en el análisis de Chlorophytas. A los investigadores del Laboratorio de Calidad de Agua de la FACEN, Acosta E. Narváez P., Acuña R. Benítez J. Méndez C., Villalba G., González M., por facilitar los parámetros físico-químicos del agua del Lago Ypacaraí.

BIBLIOGRAFÍA

BAUER, F.; K. AIRALDI & S. DRECHSEL. 2010. Anfibios de Ypacarai (Departamento Central, Paraguay). 2010. FaCEN-UNA. XI Congreso Argentino de Herpetología. Formato Póster.

BRITSKI, H.A.; K.Z. de S. De SILI-MON & B.S. LOPES. 2007. Peixes do Pantanal: manual de identificação. 2ª ed. Embrapa Informação Tecnológica, Brasília. 230pp.

CACCIALI, P. 2009. Guía para la identificación de 60 serpientes del Paraguay. Guyra Paraguay.

CACCIALI, P. & N. J. SCOTT. 2012. Revisión del género Ophiodes de Paraguay (Squamata: Anguidae). Bol. Soc. Zool. Uruguay 21 (1-2): 1-8. CARREIRA, S. M. MENEGHEL. & F. ACHAVAL. 2005. Reptiles del Uruguay. Universidad de la República de Montevideo.

CONDE-PORCUNA, J.M.; E. RAMOS-RODRÍGUEZ; R. MO-RALES-BAQUERO. 2004. El zooplancton como integrante de la estructura trófica de los ecosistemas lénticos. Ecosistemas 13 (2): 23-29.

DA GRAÇA, W.J. & C.S. PAVA-NELLI. 2007. Peixes da planície de inundação do alto Rio Paraná e áreas adjacentes. Editora da Universidade Estadual de Maringá, Maringá. 241pp. las Aves de Paraguay. Vazquez Mazzini Editores. Buenos Aires. 240 pp.

NERIS, N.; F. VILLALBA; D. KA-MADA & S. VIRÉ. 2010. Guía de

Peces del Paraguay/Guide of Fishes of Paraguay. Itaipú Binacional/Natura Vita, Asunción. 299pp.

NERIS, N.; C. E. KÖHN PATIÑO; F. L. VILLALBA; G. A. RUIZ DÍAZ & E.G. FRANCO RIVARO-LA. 2008. Guía Ilustrada de los peces más comunes del Paraguay. JICA/Natura Vita, Asunción. 252pp.

SALAS-DUEÑAS, D; F. MERE-LES & A. YANOSKY (eds). 2004. Los Humedales del Paraguay. Comité Nacional de Humedales. Asunción, PY 192 pág. + mapa.

STREBLE, H. & K. DIETER. 1987. Atlas de los microorganismos de agua dulce. Ediciones Omega. España. 372 pp.

SUMMERFELT, R. C. 1993. Lake and reservoir habitat management. Pp. 231 – 261. En: C. C. Kohler & W. A. Hubert. Eds.Inland fisheries management in North America. American Fisheries Society, Bethesda, Maryland.

VILLALBA, F.; S. VIRÉ. & J.J. RESQUÍN. 2012. Peces del Paraguay: Guía de identificación de setenta especies/Peixes do Paraguai: guia de identificação de setenta espécies. Itaipú Binacional/Natura Vita, Asunción. 204pp.

WEILER, A; K. NÚÑEZ, K. AI-RALDI, E. LAVILLA, S. PERIS & D. BALDO. 2013 anfibios del Paraguay. FACEN, San Lorenzo. 134 p. WETZEL, R. G. 1975. Limnology. Saunders, Philadelphia.

ELSAM, R. 2006. Guía de Aves del Chaco Húmedo (ed. R. Elsam y J. De Egea). Guyra Paraguay, The Natural History Museum, Fundación Moisés Bertoni y Fundación Hábitat y Desarrollo. Asunción, Paraguay.

FACETTI, J. 2002. Estado Ambiental del Paraguay: Presente y Futuro. ENAPRENA. SEAM/GTZ. Asunción-Paraguay. 236 pp.

FRANCO, D.; V. FERNÁNDEZ & J. SEGOVIA. 2004. Análisis de la actividad Genotóxica y Citotóxica en organismos expuestos a contaminantes del Lago Ypacaraí. Investigación y Estudios de la UNA, Vol. 1: 35-49. Disponible en digital: http://www.una.py/ieuna/no1/index.html.

FRANCO, D.; V. FERNÁNDEZ & J. SEGOVIA. 2006. Evaluación de actividad Genotóxica en larvas de anfibios expuestos a contaminantes del Lago Ypacarai. Octava Jornada de Biología del Paraguay-Tercera Jornada de Biología del Mercosur. Formato Póster.

FUNDACIÓN MOISÉS BERTO-NI. 2007. Biodiversidad del Paraguay, una aproximación a sus realidades. Eds. SALAS, D & F. FACETTI. Fundación Moisés Bertoni/USAID/ GEF/BM. Asunción, PY.

GÉRY, J. 1977. Characoids of the World. T.F.H. Publications, Neptune City. 672pp.

GÉRY, J; MAHNERT, V & C. DLOUHY. 1987. Poissons Characoïdes Non Characidae Du Paraguay

(Pisces, Ostariophysi). Revue Suisse Zool. 94(2): 354-464.

GONZALEZ ROMERO, N. 1981.

Informe Técnico no publicado. No 17: Clasificación Técnico-Científica del sistema "Lago Ypacaraí."

INSURRALDE, M. 2010. Formación de un museo ictiológico de referencia del Lago Ypacaraí. Investigación y Estudios de la UNA, Vol. 9, P: 101-133. Disponible en: http://www.una.py/ieuna/no9/index.html.

MERELES, F.; R. DEGEN & N. LÓPEZ DE KOCHALKA. 1992.

Humedales en el Paraguay: Breve reseña de su vegetación. Amazoniana, XII (2): 305-316.

NAROSKY, T. & D. YZURIETA. 2006. Guía para la identificación de