

ARTÍCULO ORIGINAL

http://doi.org/10.18004/rcfacen2019100269-76

Estudio conformacional del 1-buteno

Conformational study of 1-butene

Rolvideer Javier González Herrera^{1,*}, Karen Ramona Martínez Ramírez¹, Jesús Alberto Núñez¹ & Daniela Molas Benítez¹

¹Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales. Campus Universitario, San Lorenzo, Paraguay. *Email: rolvideer@hotmail.com

Resumen: Se han investigado en forma teórica los rotámeros estables del 1-buteno, como así también la abundancia conformacional en su estado electrónico fundamental, en fase gaseosa y en condiciones normales de presión y temperatura. Se utilizó el método del funcional de la densidad (DFT), con los funcionales híbridos B3LYP, BHandHLYP y bases de Dunning aug-cc-PVnZ (n = D, T, Q), incorporados en el paquete profesional Gaussian 03. Se reportan tres confórmeros estables, dos de ellos isómeros ópticos con conformación no planar en la posición skew y una conformación plana en la posición cis. La abundancia relativa determinada para la conformación planar y no planar es de 70:30 aproximadamente.

Palabras claves: 1-buteno, confórmeros, DFT, estudio teórico.

Abstract: The stable rotamers of 1-butene have been theoretically investigated, as well as the conformational abundance in its fundamental electronic state, in the gas phase and in normal conditions of pressure and temperature. The density functional method (DFT) was used, with the hybrid functionalities B3LYP, BHandHLYP and Dunning bases aug-cc-PVnZ (n = D, T, Q), incorporated in the Gaussian 03 professional package. Three are reported stabile conformers, including two optical isomers with non-planar conformation in skew position and a planar conformation in the cis position. The reative abundance determined for the planar and non-planar conformation is approximately 70:30.

Key words: 1-butene, conformers, DFT, theoretical study.

Introducción

Desde mediados del siglo XX, el gran desarrollo en el procesamiento del petróleo ha hecho hincapié en la necesidad de datos sobre el comportamiento de fases de los sistemas que contienen hidrocarburos tanto parafínicos, como olefínicos (Sage, 1948). Además, debido a la gran demanda mundial de los hidrocarburos, el conocimiento acabado de sus propiedades físicas y químicas fueron y siguen siendo de gran interés para la comunidad científica (Kunitski, *et al.* 2011).

Uno de estos hidrocarburos es el 1-buteno, sustancia de notable importancia industrial debido a su papel en la producción de combustibles sintéticos y polímeros similares al caucho, siendo además un importante precursor de polímeros de alto peso molecular que pueden ser utilizados como mejoradores del índice de viscosidad de aceites lubricantes (Olds, 1946;

 $(\mathbf{\hat{n}})$

Fontana, 1952).

El desarrollo de nuevos productos y la mejora de los procesos existentes vinculados con esta sustancia, dependerán en cierta medida de la disponibilidad de datos precisos relacionados con sus propiedades físicas (Olds, 1946). Lastimosamente en algunos casos, la necesidad de análisis precisos se ha pasado por alto, lo que condujo a informes contradictorios en la literatura (Dunning, 1953).

Una de estas controversias ha sido la conformación estructural de equilibrio del 1-buteno, que por poseer grupos moleculares unidos por enlaces simples, permite la rotación libre y el reacomodo molecular originado por la repulsión de sus átomos.

En 1946, Kilpatrick&Pitzer postulan la existencia de más de una conformación estable del 1-buteno. Aston *et al.* (1946), investigan

Recibido: 23/07/2019 Aceptado: 03/10/2019

2078-399X/2019 Facultad de Ciencias Exactas y Naturales - Universidad Nacional de Asunción, San Lorenzo, Paraguay. Este es un artículo de acceso abierto bajo la licencia CC BY 4.0 (<u>https://creativecommons.org/licenses/by/4.0/deed.es</u>).

los espectros vibracionales Raman e Infrarrojo que indicaron una sola conformación estable. Sin embargo, haciendo un cálculo de la barrera energética para la rotación de los grupos vinilo y etilo uno con respecto al otro, basados solo en las repulsiones de hidrógenos, indicaron la presencia de dos configuraciones estables no planas, que serían isómeros ópticos ubicados a cada lado de la configuración trans planar.

Sheppard (1949) reporta que según los espectros vibracionales, un solo confórmero del 1-buteno es estable. Sin embargo, Harrah&Mayo (1960), encuentran que la espectroscopía vibracional de una serie de 1-alquenos muestran la existencia de conformaciones planas y no planas, e informan que el comportamiento de las dos bandas de absorción observadas sugieren que es muy probable que exista 1-buteno a temperatura ambiente como dos pares de isómeros no equivalentes, pero no lograron caracterizarlo.

Askel *et al.* (1961), aplicando espectroscopía de resonancia magnética nuclear, informan que el 1-buteno existe como una mezcla de isómeros s-cis (planar) y dos estructuras gauge (no planar) equivalentes entre sí, donde la conformación s-cis sería la más estable. En un trabajo posterior, los mismos autores afirman que la abundancia de estos isómeros sería prácticamente igual.

Sin embargo, Kondo *et al.* (1968), aplicando espectroscopía de microondas, afirman que la estructura gauge es la más estable, pero que las estructuras eran muy complejas para determinar completamente sus parámetros estructurales.

Woller & Garbisch (1972), aplicando espectroscopía de resonancia magnética nuclear, informan que la forma cis es más estable que la forma gauge, ya que presentan una pequeña diferencia de entalpía.

Bernes&Howells (1973), realizaron estudios del espectro infrarrojo y reportan que el confórmero gauge es ligeramente más estable que el cis.

Durig&Compton (1980), aplicando métodos espectroscópicos y termodinámicos, obtuvieron evidencias de que el confórmero s-cis era más estable que el gauche. Sin embargo, en el equilibrio se encuentra una mayor población del confórmero gauche, por lo que afirman que la estabilidad relativa de estos confórmeros aún estaba en duda.

Los primeros cálculos ab initio fueron realizados por Van Hemelrijk *et al.* (1980), al nivel 4-31G/21-G, en combinación con datos experimentales obtenidos por el método de difracción de electrones + espectroscopía de microondas y reportan que la población de los confórmeros gauge y cis es de 83% y 17% respectivamente. Los autores afirman que la mezcla de rotámeros es demasiado compleja para permitir una determinación independiente de todos los parámetros estructurales.

Luego Murcko (1986), al nivel MP2/6-311++G(2df,2pd) y Gallineta (1997), al nivel HF, MP2 y DFT con 6-31G*(5D), concluyeron que la forma gauge-skew es la más estable.

Wu *et al.* (2008), aplicando espectroscopía de impulso de electrones, métodos ab initio y DFT al nivel B3LYP con la base aug-cc-pvtz, reportan que la forma gauge es la más estable, con una abundancia relativa del 69% frente al 31% de la conformación cis.

Kunitski, et al. (2011) realizaron su investigación mediante espectroscopía de mezcla de cuatro ondas degenerada de femtosegundo rotacional (fs DFWM) en condiciones de expansión supersónica. El espectro experimental fue reproducido exitosamente por una simulación ajustada utilizando una estructura única asignada al conformador gauche del 1-buteno. El conformador cis no se observó en el espectro de DFWM. La ausencia de la forma cis indica que este confórmero es a lo más igual, pero probablemente menos estable que el rotámero gauche.

Teniendo en cuenta los resultados de las investigaciones precedentes, que reportan ciertas incongruencias y contradicciones en cuanto a la conformación estructural y abundancia del 1-buteno, consideramos pertinente el presente estudio teórico, incluyendo energías extrapoladas al límite de base completa.

Materiales y métodos

La investigación se desarrolló al nivel de la teoría DFT, con los funcionales híbridos B3LYP (Becke, 1997; Lee, Yang & Parr, 1988) y BHandHLYP, con bases de Dunning (Dunning, 1971), según se describe más adelante. Todos los cálculos se llevaron a cabo utilizando el paquete de programas Gaussian 03 (Frisch et al., 2003) con el auxilio del visualizador gráfico Gauss View 4.1.

Inicialmente se realizó el estudio de los rotámeros del 1-Buteno utilizando la rutina SCAN implementada en el Gaussian 03. Para esto se utilizaron 72 rotaciones de 5° de los grupos moleculares unidos por el enlace simple =C-C-.

Para las estructuras correspondientes a máximos y mínimos sobre la superficie de energía potencial, se realizaron optimizaciones completas de geometrías y energías, aplicando el método mecáno-cuántico DFT al nivel B3LYP/aug-cc-PVnZ//B3LYP/aug-cc-PVnZ y BHandHLYP/aug-cc-PVnZ//BHandHLYP/aug-cc-PVnZ, donde se utilizan las bases polarizadas de correlación consistente y difusas de Dunning aug-cc-PVnZ (n = D,T,Q). En todos los casos se realizaron los cálculos de las frecuencias armónicas y las energías del punto cero (ZPE) de las estructuras estudiadas, utilizando la rutina frequency del Gaussian 03.

Se hacen correcciones de la energía, adicionando en cada caso ZPE y extrapolando a base infinita (CBS). Se optó por utilizar un método mixto gaussiano-exponencial recomendado en la literatura (Rodriguez-Linares, et al., 2015; Sancho, 2001). Esta aproximación, también denominada método de tres parámetros, fue propuesta por Peterson *et al.* (1994), y utiliza la relación:

$$E_X = E_{\infty} + Ae^{-(X-1)} + Be^{-(X-1)^2}$$
. (1)

Estas ecuaciones ya están incorporadas en la calculadora desarrollada por Vasilyev (2017), con la cual se obtuvieron las energías extrapoladas al límite de base completa.

Resultados y discusión

En este trabajo fue utilizada la convención adoptada por Kondo et al. (1968), donde un

Forma Skew Forma Cis

Figura 1. Conformación espacial optimizada del 1-buteno al nivel B3LYP/aug-cc-PVQZ y BHandHLYP/ aug-cc-PVQZ.

confórmero rotatorio cuyo ángulo diedro es de aproximadamente 120º desde la forma cis, se denominará forma skew (sesgado), en lugar de forma gauge, que corresponde a un ángulo diedro de aproximadamente 120º desde la posición trans.

Se han identificado tres confórmeros rotacionales, uno con conformación cis (plana) y dos conformaciones skew (no planar) que son isómeros ópticos entre sí.

En la Figura 1, se puede observar la conformación espacial adoptada por los confórmeros rotacionales del 1-buteno.

Dos de los rotámeros presentan conformación no planar, con ángulos diedros de aproximadamente 120° desde la posición cis (planar), por lo que se les ha asignado la denominación skew. Los ángulos diedros de la forma cis confirman que los carbonos que conforman la molécula subyacen todos en un solo plano, según se puede observar en la Figura 2 y pueden ser corroborados por los parámetros geométricos optimizados detallados más adelante.

Estos resultados concuerdan con lo reportado

Figura 2. Vista lateral de los rotámeros optimizados del 1-buteno.

	Distancias inter-atómicas (Ångström)						
Enlaces	Forma Skew			Forma Cis			
	B3LYP aug-cc-pvqz	BHandHLYP aug-cc-pvqz	Kondo <i>et al.</i> (1968)	B3LYP aug-cc-pvqz	BHandHLYP aug-cc-pvqz	Kondo <i>et al.</i> (1968)	
R(C1-H2)	1,0833	1,0757	1,090	1,0815	1,0739	1,090	
R(C1-H3)	1,0813	1,0738	1,090	1,0811	1,0736	1,090	
R(C1-C4)	1,3269	1,3167	1,342	1,3273	1,3172	1,334	
R(C4-H5)	1,0869	1,0790	1,090	1,0860	1,0781	1,090	
R(C4-C6)	1,4991	1,4916	1,493	1,5019	1,4943	1,507	
R(C6-H7)	1,0917	1,0840	1,095	1,0953	1,0873	1,095	
R(C6-H8)	1,0946	1,0867	1,095	1,0953	1,0873	1,095	
R(C6-C9)	1,5338	1,5229	1,536	1,5251	1,5152	1,536	
R(C9-H10)	1,0910	1,0838	1,095	1,0903	1,0830	1,095	
R(C9-H11)	1,0901	1,0828	1,095	1,0896	1,0823	1,095	
R(C9-H12)	1,0900	1,0828	1,095	1,0903	1,0830	1,095	

Tabla 1. Distancias inter-atómicas del 1-buteno al nivel B3LYP/aug-cc-PVQZ y BHandHLYP/aug-cc-PVQZ.

por Aston *et al.* (1946), donde los espectros infrarrojos y raman confirman la existencia de dos configuraciones estables de conformación no planar, que son isómeros ópticos y que se encuentran aproximadamente a un tercio de revolución. Pero no lograron observar la presencia de una concentración apreciable de la conformación cis planar.

Sin embargo, nuestros resultados concuerdan plenamente con lo reportado por Askel *et al.* (1961), donde afirman que el 1-buteno existe como una mezcla de isómeros cis (planar) y dos estructuras no planas equivalentes. Así también, los parámetros estructurales están en buen acuerdo con las configuraciones estructurales reportadas

Figura 3. Energías relativas de los distintos confórmeros del 1-buteno al nivel B3LYP/aug-cc-PVQZ extrapoladas a CBS.

por Kondo *et al.* (1968), las cuales se pueden observar en las Tablas 1 y 2.

Se observa que el método B3LYP proporciona distancias inter-atómicas más próximas a los datos experimentales reportados, sin embargo, para los ángulos inter-atómicos, el método BHandHLYP está en mejor acuerdo con dichos datos.

Las energías de todas las estructuras de equilibrio, sobre la superficie de energía potencial torsional del 1-buteno, se pueden observar en las Tablas 3 y 4.

Las barreras torcionales y energías relativas de los distintos confórmeros se pueden observar en las Figuras 3 y 4.

Figura 4. Energías relativas de los distintos confórmeros del 1-buteno al nivel BHandHLYP/aug-cc-PVQZ extrapoladas a CBS.

Rolvideer Javier González Herrera, Karen Ramona Martínez Ramírez, Jesús Alberto Núñez & Daniela Molas Benítez

105.7

No reportado

No reportado

110.3

110,3

110,3

No reportado

No reportado

No reportado

el	l 1-buteno al nivel B3LYP/aug-cc-PVQZ y BHandHLYP/aug-cc-PVQZ.					
	Ángulos inter-atómicos (Grados)					
Forma Skew			Forma Cis			
	BHandHLYP aug-cc-PVQZ	Kondo <i>et al.</i> (1968)	B3LYP aug-cc-PVQZ	HandHLYP aug-cc-PVQZ	Kondo <i>et al.</i> (1968)	
	116,8665	No reportado	116,5016	116,6292	No reportado	
	121,4960	No reportado	122,4086	122,3353	No reportado	
	121,6374	No reportado	121,0898	121,0354	No reportado	
	118,8372	No reportado	118,3449	118,3436	No reportado	
	125,3485	125,4	126,9010	126,7532	126,7	
	115,8116	117,1	114,7541	114,9032	115,1	
	109,4719	No reportado	108,1142	108,1298	No reportado	
	108,9773	No reportado	108,1138	108,1289	No reportado	
	112,6586	112,1	116,1322	115,8524	114,8	

104,7045

109,5771

109,5771

111.4442

110,5349

111,4443

107,7258

107,7988

107,7256

Tabla 2. Ángulos inter-atómicos de

Se observa que las moléculas de conformación skew (no planar) son aproximadamente isoenergéticas y poseen energías más bajas que la conformación cis. La diferencia energética calculada al nivel B3LYP y BHandHLYP entre dichos confórmeros es de 0,53 kcal/mol y 0,44 kcal/mol, respectivamente.

Enlaces

A(H2.C1.H3)

A(H1,C1,C4)

A(H3,C1,C4)

A(C1,C4,H5)

A(C1,C4,C6)

A(H5,C4,C6)

A(C4,C6,H7)

A(C4,C6,H8)

A(C4,C6,C9)

A(H7,C6,H8)

A(H7,C6,C9)

A(H8,C6,C9)

A(C6,C9,H10)

A(C6,C9,H11)

A(C6,C9,H12)

A(H10,C9,H11)

A(H10,C9,H12)

A(H11,C9,H12)

B3LYP aug-cc-PVQZ

116,7504

121,5414

121,7081

118,8203

125,4566

115,7203

109,5145

108,9909

112.8656

106.6151

109,9791

108,6735

111.1539

110,9962

110,9659

107,7497

107,6962

108,1322

106.6946

110.0429

108.8101

111.0910

111,0227

110,9378

107,7745

107,7181

108,1533

Estos resultados están en buena concordancia con los resultados informados por Gallineta et al. (1997), donde reportan que la forma skew es más estable en 0,69 kcal/mol, 0,48 kcal/mol y 0,44 kcal/mol, en los niveles Hartre Fock (HF), Moller Pleset de segundo orden (MP2) y DFT, respectivamente.

También se halla en excelente acuerdo con los resultados reportados por Van Hemelrijk et al. (1980), donde utilizan una combinación de métodos como difracción de electrones, espectroscopía de micro-ondas y mecánica molecular, y reportan que la mejor energía estimada entre los rotámeros del 1-buteno es de 0,53 kcal/mol, que es aproximadamente igual a la energía que hemos calculado al nivel de teoría B3LYP.

104.9531

109,6041

109,6042

111.3896

110,5089

111,3898

107,7726

107,8486

107,7721

105.2

No reportado

No reportado

110.4

110,4

110,4

No reportado

No reportado

No reportado

La barrera torsional calculada entre las estructuras de conformación skew al nivel B3LYP y BHandHLYP fue de 1,73 kcal/mol y 1,83 kcal/ mol respectivamente. Estas energías están en

Energías al nivel B3LYP (Hartree)					
Rotámeros	Eaug-cc-PVDZ + ZPVE	Eaug-cc-PVTZ + ZPVE	Eaug-cc-PVQZ + ZPVE	Energía CBS Peterson <i>et al</i> .	
Skew	-157,1301140	-157,1777290	-157,1889820	-157,1949373	
Cis	-157,1294430	-157,1769130	-157,1881500	-157,1940996	
Skew	-157,1301130	-157,1777280	-157,1889840	-157,1949414	
TS1	-157,1274990	-157,1749970	-157,1862310	-157,1921776	
TS2	-157,1265340	-157,1740600	-157,1853120	-157,1912698	
TS3	-157,1265340	-157,1740600	-157,1853130	-157,1912714	

 Tabla 3. Energías de todas las conformaciones estructurales de equilibrio del 1-buteno al nivel B3LYP/aug-cc-PVQZ extrapoladas a CBS.

buen acuerdo con los 1,69 kcal/mol reportado por Durig&Compton (1980).

Finalmente, la barrera torsional entre las formas skew y cis determinada por los métodos antes citados, fue de 2,30 kcal/mol y 2,39 kcal/ mol.

Conclusión

Se han caracterizado tres confórmeros estables del 1-buteno, dos isómeros ópticos con conformación skew (sesgado) isoenergéticos y una conformación cis (plana). Tanto por el método B3LYP como BHandHLYP, las conformaciones skew son más estables que la conformación cis, lo cual, según la estadística de Maxwell-Boltzmann, lleva a poblaciones de aproximadamente 70% y 30% a temperatura ambiente.

Referencias

- Aksel, A., Bothener, B. & Naar, C.C. (1961). The Proton Magnetic Resonance Spectra of Olefins. I. Propene, Butene-1 and Hexene-1. *Journal of the American Chemical Society*, 83:231-236.
- Aston, J.G. (1946). Thermodynamic Properties of Gaseous 1,3-Butadiene and the Normal Butenes above 25°C. *The Journal of Chemical Physics*, 14(2): 67-79.
- Becke, A.D. (1997). Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. *The Journal of Chemical Physics*, 107:8554–8560.
- Barnes, A.J. & Howells, D.R. (1973). Infra-red Cryogenic Studies. *Journal of the Chemical*

	Energías al nivel BHandHLYP (Hartree)				
Rotámeros	Eaug-cc-PVDZ + ZPVE	Eaug-cc-PVTZ + ZPVE	Eaug-cc-PVQZ + ZPVE	Energía CBS Peterson <i>et al</i> .	
Skew	-157,0157030	-157,0605090	-157,0708640	-157,0763095	
Cis	-157,0151570	-157,0598230	-157,0701670	-157,0756100	
Skew	-157,0157030	-157,0605100	-157,0708640	-157,0763088	
TS1	-157,0129270	-157,0576230	-157,0679590	-157,0733955	
TS2	-157,0119840	-157,0567020	-157,0670530	-157,0724989	
TS3	-157,0119860	-157,0567050	-157,0670560	-157,0725019	

Tabla 4. Energías de todas las conformaciones estructurales de equilibrio del 1-buteno al nivel BhandHLYP/aug-cc-PVQZ extrapoladas a CBS.

Rolvideer Javier González Herrera, Karen Ramona Martínez Ramírez, Jesús Alberto Núñez & Daniela Molas Benítez

Society, Faraday Transactions 2, 69: 532-539.

- Dunning, H.N. (1953). Review of Olefin Isomerization. *Industrial & Engineering Chemistry*, 45(3): 552-564.
- Dunning, T.H. (1971). Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the FirstRow Atoms. *The Journal of Chemical Physics*, 55:716-723.
- Durig, J.R. & Compton, D.A.C. (1980). Spectroscopic and Thermodynamic Study of the Conformational Properties and Torsional Potential Functions of 1-Butene. *The Journal of Physical Chemistry*, 84(7): 773-781.
- Fontana, C.M., Herold, R.J., Kinney, E.J. & Miller, R.C. (1952). High Molecular Weight Polymers form Propylene and 1-butene. *ndustrial & Engineering Chemistry*, 44(12): 2955-2962.
- Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Rob, M., Cheeseman, J., Montgomery, J., Vreven, T., Kudin, K., Burant, J., Millam, J., Iyengar, S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J., Hratchian, H., Cross, J., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R., Yazyev, O., Austin, A., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P., Morokuma, K., Voth, G., Salvador, P., Dannenberg, J., Zakrzewski, V., Dapprich, S., Daniels, A., Strain, M., Farkas, O., Malick, D., Rabuck, A., Raghavachari, K., Foresman, J., Ortiz, J., Cui, Q., Baboul, A., Clifford, S., Cioslowski, J., Stefanov, B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R., Fox, D., Keith, T., Al-Laham, M., Peng, C., Nanayakkara, A., Challacombe, M., Gill, P., Johnson, B., Chen, W., Wong, M.,

Gonzalez, C., & Pople, J. (2003). *Gaussian* 03. Wallingford: Gaussian, Inc.

- Gallineta, E. & Cadioli, B. (1997). Infrared and Raman spectra, ab initio force field and vibracional assignment of the rotational isomers of 1-butene. *Vibrational Spectroscopy*, 13:163-174
- Harrah, L. A. & Mayo, D.W. (1960). Rotational Isomerism Involving the 2-3 Carbon-Carbon Bond of the 1-Alkenes. *The Journal* of Chemical Physics. 33:298-293.
- Kilpatrick, J.E. & Pitzer, K.S. (1946). Heat Content, Free-energy Function, Entropy, and Heat Capatity of Ethylene, Propylene, and the Four Butenes to 1500 K. *Journal* of Research of the National Bureau of Standards, 37: 163-171.
- Kondo, S., Hirota, E. & Morino, Y. (1968). Microwave Spectrum and Rotational Isomerism in Butene-1. Journal of Molecular Spectroscopy. 28: 471-489.
- Kunitski, M., Knippenberg, S., Dreuw, A. & Brutschy, B. (2011). The conformational stability of gaseous 1-butene studied by femtosecond nonlinear spectroscopy and ab initio calculations. *Vibrational Spectroscopy*, 56: 13-18.
- Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Physical review B*, *37*(2): 785.
- Murcko, M.A., Castejon, H. & Wiberg, K.B. (1996). Carbon-Carbon Rotational Barriers in Butane, 1-Butene, and 1,3-Butadiene. *The Journal of Physical Chemistry*, 100: 16162-16168.
- Olds, R.H., Sage, B.H. & Lacey, W.N. (1946). Volumetric Behavior of 1-Butene. *Industrial* & *Engineering Chemistry*, 38(3):301-303.
- Peterson, K.A., Woon, D.E. & Dunning Jr., T.H. (1994) Calculationes with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction. *The Journal of Chemical Physics*,

100: 7410-7415.

- Rodríguez-Linares, D., Freitas, G., Ballester, Nascimento, M.A.C. & Garrido, J. (2015).
 Coupled-Cluster Study of the Lower Energy Region of the Ground Electronic State of the HSO₂ Potential Energy Surface. *The Journal of Physical Chemistry A*, 119(32): 8734–8743.
- Sage, B. H. & Lacey, W. N. (1948). *Industrial & Engineering Chemistry*, 40(7): 1299-1301.
- Sancho, J.C. (2001). La teoría del funcional densidad y las ecuaciones variacionales de Kohn-Sham: aportación de nuevos aspectos sobre sus posibilidades y limitaciones. Tesis Doctoral. Facultad de Ciencias, Universidad de Alicante. Alicante. 335 pp.
- Sheppard, N. (1949). The Assignment of the Vibrational Spectra of the C4 Hydrocarbons Butyne-1, Butene-1, and Vinyl Acetylene, to the Normal Modes of Vibration of These Molecules. *The Journal of Chemical Physics*, 17(1): 74-78.

- Van Hemelrijk, D., Van den Enden, L., Geise, H.J., Sellers, H.L. & Schafer, L. (1980). Structure Determination of 1-Butene by Gas Electron Diffraction, Microwave Spectroscopy, Molecular Mechanics, and Molecular Orbital Constrained Electron Diffraction. Journal of the American Chemical Society, 102(7): 2189-2195.
- Vasilyev, V. (2017). Online complete basis set limit extrapolation calculator. En *Elsevier*, *Computational and Theoretical Chemistry*, 1115: 1-3.
- Woller, P.B. & Garbisch, E.W. (1972). The Conformational Analysis of 1-Butene. *The Journal of Organic Chemistry*, 37(26): 4281-4285.
- Wu, F., Chen, X., Shan, X., Tian, S. X., Li, Z., & Xu, K. (2008). Conformational stability of 1-butene: an electron momentum spectroscopy investigation. *The Journal of Physical Chemistry*, 112: 4360-4366.