

ARTÍCULO ORIGINAL

MODELADO MECÁNO-CUÁNTICO COMPUTACIONAL DEL ESTADO ELECTRÓNICO BÁSICO PARA LA REACCIÓN DEL TRANS-2-BUTENOATO DE ETILO CON CLORO ATÓMICO

QUANTUM MECHANICAL COMPUTER MODELING OF THE REACTION FOR TRANS-2-BUTENOATE WITH ATOMIC CHLORINE ON THE GROUND ELECTRONIC STATE

ROLVIDEER JAVIER GONZÁLEZ HERRERA¹ & JUAN DE DIOS GARRIDO ARRATE²

¹Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, Campus Universitario, San Lorenzo, Paraguay. Email: rolvideer@hotmail.com

²Universidad Federal de Integración Latinoamericana, Foz de Iguazú, Brasil. Email: garrido.jd@gmail.com

Resumen: Se han investigado en forma teórica los rotámeros estables del trans-2-butenoato de etilo, como así también los radicales formados de la abstracción de hidrógenos y adición del cloro en su estado electrónico fundamental, en fase gaseosa y en condiciones normales de presión y temperatura. Se utilizó el método del funcional de la densidad (DFT), con el funcional híbrido B3LYP y base de Dunning aug-cc-pVTZ, incorporados en el paquete profesional Gaussian 03. Se reportan por primera vez los parámetros estructurales de cuatro confórmeros estables de este compuesto orgánico volátil (COV). Se han identificado siete radicales estables en la reacción primaria con átomos de cloro dentro de los cuales se ha encontrado un orden energético, que permite llegar a conclusiones sobre aquellos con mayor influencia en los procesos químicos atmosféricos.

Palabras claves: trans-2-butenoato de etilo, confórmeros, DFT, estudio teórico.

Abstract: The stable rotamers of ethyl trans-2-butenoate have been theoretically investigated, as well as the radicals formed from the abstraction of hydrogens and the addition of chlorine in its fundamental electronic state, in gas phase and under normal pressure conditions and temperature. The density functional method (DFT) was used, with the functional hybrid B3LYP and Dunning base aug-cc-pVTZ, incorporated in the Gaussian 03 professional package. The structural parameters of four stable conformers of this are reported for the first time Volatile organic compound (VOC). Seven stable radicals have been identified in the primary reaction with chlorine atoms and allow establishing an energy order, in order to reach conclusions about those with greater influence on atmospheric chemical processes.

Key words: ethyl trans-2-butenoate, conformers, DFT, theoretical study.

INTRODUCCIÓN

Gran cantidad de compuestos orgánicos volátiles (COVs) son emitidos a la atmósfera como contaminantes primarios, tanto a partir de un amplio número de fuentes antropogénicas, como en los casos de los ésteres y compuestos aromáticos, como de fuentes biogénicas, como ocurre con los terpenos (Helmig et al., 1989; Colomer et al., 2013; Oliveira y Pfeiter., 2013). Los estudios dedicados a las reacciones de estos compuestos con los distintos oxidantes atmosféricos, indican que la principal vía de degradación es la reacción con radicales OH (Atkinson, 2000). Sin embargo, la degradación de ésteres por átomos de Cl, es capaz de competir con la oxidación iniciada por radicales OH en aquellas zonas donde la concentración de átomos de Cl es significativamente mayor que la concentración promedio global, tal como podría ocurrir en zonas costeras y algunas regiones industriales, especialmente por las mañanas (Blanco et al., 2015).

Los ésteres, se utilizan ampliamente en las industrias como disolventes, en la fabricación de aromatizantes y perfumes, sumándose a lo producido naturalmente por la vegetación (Helmig et al., 1989). Otra contribución a la presencia de ésteres en la atmósfera es la degradación de éteres (Japar et al., 1990; Smith et al., 1991).

éster denominado trans-2-butenoato El de etilo $(C_6H_{10}O_2)$ ha sido reconocido como un sistema de interés, especialmente por su posible reacción con átomos de cloro. Teruel *et al.* (2012) determinaron experimentalmente la constante de velocidad de reacción de esta especie con átomos de cloro e indicaron en su trabajo que, hasta esa fecha, no existían registros en la literatura para su comparación. Por otro lado Sun et al. (2016), en un estudio teórico al nivel de cálculo M06-2X/6-311++G(d,p)//M06-2X/6-311++G(3df,2p),reportan la constante de velocidad de reacción del C₆H₁₀O₂ con el radical hidroxilo y algunos parámetros geométricos del estado electrónico fundamental de la molécula utilizada, sin informar sobre un estudio conformacional previo. Una discusión más detallada de este trabajo será presentada en el epígrafe de Resultados y Discusión.

No hemos encontrado en la literatura especializada un estudio teórico detallado sobre los diferentes isómeros del $C_6H_{10}O_2$ y de los radicales que se forman al reaccionar este COV con átomos de Cl. Este hecho, junto a la escasa información referente a este COV, motiva el presente estudio teórico que tiene el objetivo de describir los isómeros de este COV y su posible reacción con átomos de cloro, incluyendo el estudio conformacional de los radicales formados en esas reacciones. A lo largo del estudio nos hemos mantenido siempre en el estado electrónico básico del $C_6H_{10}O_2$.

MATERIALES Y MÉTODOS

La investigación se desarrolló al nivel de la teoría DFT, con el funcional híbrido B3LYP (Becke, 1997; Lee, Yang & Parr, 1988) y bases de Pople (Pople et al., 1987) y Dunning (Dunning, 1971), según se describe más adelante. Todos los cálculos se llevaron a cabo utilizando el paquete de programas Gaussian 03 (Frisch et al., 2003) con el auxilio del visualizador gráfico Gauss View 4.1.

Inicialmente se realizó un estudio de los rotámeros del $C_6H_{10}O_2$ utilizando la rutina SCAN implementada en el Gaussian 03. Para esto se utilizaron 72 rotaciones de 5° de todos los grupos moleculares de la molécula unidos por enlaces simples, excepto aquellos que solo involucran carbono e hidrógeno. El rotámero de menor energía, que llamamos R1, fue utilizado para realizar el estudio de las reacciones químicas consideradas en el trabajo y la optimización de las estructuras de los radicales asociados.

Para realizar las optimizaciones de geometría se siguió la metodología de, inicialmente, aplicar la base de Pople 3-21*g++ (B3LYP//3-21*g++) para luego, a partir de la geometría optimizada obtenida, volver a minimizar con la base de Dunning augcc-pVTZ (B3LYP//aug-cc-pVTZ). En todos los casos se realizaron los cálculos de las frecuencias armónicas y las energías del punto cero de las estructuras estudiadas utilizando la rutina frequency del Gaussian 03.

Para realizar la corrección a base infinita (CBS, siglas en inglés) se optó por utilizar un método potencial y otro exponencial recomendados en la literatura (Rodriguez-Linares, et al., 2015; Sancho, 2001). Para el método potencial se utilizó el método de dos parámetros propuesto por Helgaker y colaboradores (1997), que utiliza la relación:

$$E_X = E_\infty + BX^{-3},\tag{1}$$

y para la aproximación exponencial el método de tres parámetros propuesto por Peterson y colaboradores (1994), que utiliza la relación:

$$E_X = E_{\infty} + Ae^{-(X-I)} + Be^{-(X-I)^2}.$$
 (2)

Estas ecuaciones ya están incorporadas en la calculadora desarrollada por Vasilyev (2017), con la cual se obtuvieron las energías extrapoladas al límite de base completa.

Partiendo de las geometrías optimizadas al nivel de teoría B3LYP/aug-cc-pVTZ, se realizaron los cálculos puntuales de energía necesarios para la corrección a base infinita con las bases aug-cc-pVnZ (n = D y Q).

En el trabajo se investigan dos tipos de reacciones de los átomos de Cl con el COV:

a) la abstracción de átomos de hidrógeno del COV por el átomo de cloro según la reacción

Figura 1. Conformación espacial optimizada al nivel B3LYP/ aug-cc-pVTZ del rotámero R1.

$$C_6 H_{10} O_2 + Cl \rightarrow Radical + HCl \qquad (3)$$

b) la adición del átomo de cloro al doble enlace del COV siguiendo la reacción

$$C_6 H_{10} O_2 + Cl \rightarrow Radical \tag{4}$$

Para el estudio de las reacciones anteriormente indicadas se utilizó el confórmero más estable encontrado en la investigación de los rotámeros del COV. Todos los radicales encontrados fueron optimizados y determinadas sus frecuencias como fue explicado anteriormente.

RESULTADOS Y DISCUSIÓN

Estudio de rotámeros del trans-2-butenoato de etilo

En la figura Nº 1, se puede observar la conformación espacial adoptada por el confórmero inicial optimizado R1 del trans-2-butenoato de etilo.

Los carbonos y oxígenos que conforman la molécula subyacen todos en un solo plano, según se puede observar en la figura Nº 2, y puede ser corroborado por los parámetros geométricos detallados más adelante.

Figura 2. Vista lateral del rotámero R1.

Rotámero R1 Rotámero R2 Rotámero R3 Rotámero R4

Figura 3. Conformación espacial de los distintos rotámeros del trans-2-butenoato de etilo.

ROLVIDEER JAVIER GONZÁLEZ HERRERA & JUAN DE DIOS GARRIDO ARRATE, PP. 132-141

Enlaces	Distancias inter-átomicas (Ångström)						
	R1	R2	R3	R4			
R(C1—H2)	1,0932	1,0931	1,0932	1,0931			
R(C1—H3)	1,0892	1,0891	1,0893	1,0892			
R(C1—H4)	1,0932	1,0931	1,0932	1,0932			
R(C1—C5)	1,4903	1,4917	1,4896	1,4903			
R(C5—H6)	1,0855	1,0841	1,0851	1,0855			
R(C5—C7)	1,3316	1,3323	1,3332	1,3317			
R(C7—H8)	1,0823	1,0826	1,0805	1,0822			
R(C7—C17)	1,4776	1,4759	1,4852	1,4777			
R(O9-C10)	1,4446	1,4447	1,4393	1,4461			
R(O9—C17)	1,3528	1,3511	1,3586	1,3538			
R(C10—H11)	1,0902	1,0901	1,0921	1,0883			
R(C10—H12)	1,0902	1,0901	1,0921	1,0882			
R(C10—C13)	1,5119	1,5119	1,5136	1,5168			
R(C13—H14)	1,0899	1,0900	1,0893	1,0888			
R(C13—H15)	1,0906	1,0906	1,0907	1,0913			
R(C13—H16)	1,0899	1,0900	1,0893	1,0901			
R(C17—O18)	1,2099	1,2111	1,2061	1,2100			

 Tabla 1. Distancias inter-átomicas de los distintos rotámeros del trans-2-butenoato de etilo.

El hecho de que los átomos principales de la molécula estén todos contenidos en un solo plano, presupone que no existe una región preferencial, ni por arriba ni por debajo de dicho plano, para el ataque del cloro o cualquier otro oxidante troposférico.

Se identificaron tres rotámeros a partir del confórmero R1. La rotación del ángulo diedro $D(C_5 - C_7 - C_{17} - O_{18})$, tomando como eje de rotación al enlace $C_7 - C_{17}$, conduce a la formación del rotámero R2, a los 180° de rotación. De la rotación del diedro $D(O_{18} - C_{17} - O_9 - C_{10})$, alrededor del enlace $C_{17} - O_9$, se obtiene el rotámero R3, también a los 180° de rotación. Por último, la rotación del diedro $D(C_{17} - O_9 - C_{10} - H_{12})$, alrededor del enlace $O_9 - C_{10}$, conduce al rotámero R4, a los 95° y 265° de rotación.

Los rotámeros R2 y R3 mantienen sus átomos principales en un solo plano, no así el rotámero R4. La figura Nº 3 presenta la conformación espacial

Tabla 2. Ángulos de enlace de los distintos rotámeros del trans-2-butenoato de etilo.

Falsas	Ángulos de enlace (Grados)						
Emaces	R1	R2	R3	R4			
A(H2—C1—H3)	108,5424	108,5274	108,5686	108,5473			
A(H2—C1—H4)	106,2994	106,3575	106,2323	106,3028			
A(H2—C1—C5)	110,5519	110,6183	110,4524	110,5553			
A(H3—C1—H4)	108,5424	108,5274	108,5686	108,5476			
A(H3—C1—C5)	112,1491	111,9967	112,3517	112,1523			
A(H4—C1—C5)	110,5520	110,6183	110,4524	110,5322			
A(C1—C5—H6)	117,2142	116,8079	117,2845	117,2216			
A(C1—C5—C7)	125,3281	124,7957	125,3365	125,3449			
A(H6—C5—C7)	117,4577	118,3964	117,3790	117,4336			
A(C5—C7—H8)	121,8427	121,3542	119,8944	121,8785			
A(C5—C7—C17)	121,2847	125,2443	120,3304	121,2579			
А(Н8—С7—С17)	116,8725	113,4014	119,7752	116,8635			
A(C10-09-C17)	116,2710	116,1869	123,0252	117,0923			
A(O9—C10—H11)	108,6439	108,6949	109,7152	104,3309			
A(O9—C10—H12)	108,6439	108,6949	109,7152	108,7998			
A(O9—C10—C13)	107,8272	107,7857	107,3177	111,4637			
A(H11—C10—H12)	107,5910	107,6207	108,6827	109,4210			
A(H11—C10—C13)	112,0218	111,9797	110,6992	111,3373			
A(H12—C10—C13)	112,0219	111,9798	110,6992	111,2376			
A(C10—C13—H14)	111,0807	111,1065	110,6978	110,8821			
A(C10—C13—H15)	109,6497	109,6241	109,8833	109,6190			
A(C10—C13—H16)	111,0808	111,1065	110,6978	110,8833			
A(H14—C13—H15)	108,2664	108,2324	108,5576	108,1971			
A(H14—C13—H16)	108,4066	108,4462	108,3830	108,9462			
A(H15—C13—H16)	108,2664	108,2324	108,5576	108,2329			
A(C7—C17—O9)	110,6372	113,6297	118,3142	110,4332			
A(C7—C17—O18)	126,0678	123,2222	123,6099	125,8898			
A(09—C17—O18)	123,2950	123,1481	118,0759	123,6767			

MODELADO MECÁNO-CUÁNTICO DEL ESTADO ELECTRÓNICO BÁSICO PARA LA REACCIÓN DEL TRANS-2-BUTENOATO DE ETILO CON CLORO ATÓMICO

adoptada por todos los rotámeros.

La rotación de los grupos moleculares alrededor de los enlaces simples antes mencionado, conduce a una redistribución de las cargas dentro de la molécula, la cual induce ciertas modificaciones en las distancias y ángulos inter-átomicos para alcanzar la estabilidad. Los parámetros estructurales de todos los rotámeros identificados

Enlance	Ángulos Diedros (Grados)						
Enlaces	R1	R2	R3	R4			
D(H2-C1-C5-H6)	-58,7151	-58,7921	-58,6128	-58,5222			
D(H2—C1—C5—C7)	121,2849	121,2079	121,3873	121,4726			
D(H3—C1—C5—H6)	-179,9999	-180,0000	-180,0000	-179,8179			
D(H3—C1—C5—C7)	0,0001	0,0000	0,0000	0,1769			
D(H4—C1—C5—H6)	58,7153	58,7922	58,6128	58,9022			
D(H4—C1—C5—C7)	-121,2847	-121,2078	-121,3872	-121,1029			
D(C1—C5—C7—H8)	0,0001	0,0000	0,0000	0,0000			
D(C1—C5—C7—C17)	-180,0000	-180,0000	180,0000	179,9798			
D(H6—C5—C7—H8)	-179,9999	180,0000	-180,0000	-179,9642			
D(H6—C5—C7—C17)	0,0000	0,0000	0,0000	-0,0253			
D(C5—C7—C17—O9)	-179,9993	-0,0001	-179,9997	-179,8112			
D(C5-C7-17-O18)	0,0007	179,9999	0,0003	0,3773			
D(H8—C7—C17—O9)	0,0007	179,9999	0,0003	0,1307			
D(H8—C7—C17—O18)	-179,9994	-0,0001	-179,9997	-179,6808			
D(C17—O9–10—H11)	58,3892	58,4324	59,6662	152,2561			
D(C17—O9—C10—H12)	-58,3837	-58,4318	-59,6663	35,5448			
D(C17—O9—C10—C13)	-179,9973	180,0003	180,0000	-87,4807			
D(C10-09-C17-C7)	180,0000	180,0000	0,0002	179,7055			
D(C10—O9—C17—O18)	0,0000	0,0000	-179,9998	-0,4780			
D(O9-C10-C13-H14)	60,3747	60,4171	60,1039	64,4206			
D(O9—C10—C13—H15)	-179,9997	180,0000	180,0000	-176,1841			
D(O9—C10—C13—H16)	-60,3741	-60417,0000	-60,1039	-56,7437			
D(H11—C10—C13—H14)	179,8673	179,9206	179,8108	-179,5312			
D(H11—C10—C13—H15)	-60,5072	-60,4965	-60,2931	-60,1360			
D(H11—C10—C13—H16)	59,1184	59,0864	59,6030	59,3044			
D(H12-C10-C13-H14)	-59,1180	-59,0864	-59,6031	-57,2010			
D(H12-C10-C13-H15)	60,5076	60,4965	60,2930	62,1943			
D(H12-C10-C13-H16)	-179,8668	-179,9205	-179,8109	-178,3653			

Tabla 3. Ángulos diedros de los distintos rotámeros del trans-2-butenoato de etilo.

ROLVIDEER JAVIER GONZÁLEZ HERRERA & JUAN DE DIOS GARRIDO ARRATE, PP. 132-141

	Energías (KJ/mol)								
Conformeros	ZPVE/Aug-cc-PVTZ	E/Aug-cc-PVTZ	E/Aug-cc-PVTZ + ZPVE	CBS-TQ	CBS-DTQ				
R1	396,5503	-1011504,8884	-1011108,3380	-1011630,1236	-1011616,6338				
R2	396,5372	-1011501,6981	-1011105,1606	-1011626,8502	-1011613,3576				
R3	396,1512	-1011471,5453	-1011075,3940	-1011596,6832	-1011583,2126				
R4	396,9441	-1011503,1441	-1011106,1998	-1011628,4061	-1011614,9210				

Tabla 4. Energías de los distintos rotámeros del tras-2-butenoato de etilo al nivel B3LYP/aug-cc-pVTZ.

Tabla 5. Frecuencias vibracionales de los distintos rotámeros del $C_6H_{10}O_2$ al nivel B3LYP/aug-cc-pVTZ.

Nº	R1	R2	R3	R4	R(SUN)*	Nº	R1	R2	R3	R4	R(SUN)*
1	52,1972	62,4511	57,1484	58,8889	93	25	1201,3564	1281,2717	1198,2996	1202,2111	1297
2	82,4104	87,3034	106,2477	68,7125	98	26	1296,2182	1297,4686	1310,3498	1325,2310	1318
3	116,9697	112,5596	124,8591	129,6621	117	27	1325,8717	1304,6970	1324,2704	1331,4130	1325
4	144,8472	125,8934	127,8871	147,8188	159	28	1339,9591	1333,2388	1363,9307	1339,6563	1333
5	213,4132	203,4755	198,0844	210,6530	217	29	1400,2937	1402,7298	1401,6819	1402,4724	1406
6	220,8446	214,4913	213,3615	213,9132	238	30	1413,1106	1412,2396	1410,0915	1412,0957	1421
7	244,6832	246,4220	241,8943	223,9873	256	31	1424,3615	1426,1992	1422,2018	1417,4345	1448
8	271,9885	263,8834	255,4552	331,1984	284	32	1478,3981	1477,9131	1476,9231	1477,9817	1489
9	349,3514	354,1509	342,8474	364,0793	365	33	1485,6962	1484,5735	1484,7169	1484,7578	1494
10	395,0243	388,0004	403,8511	407,2654	398	34	1487,1489	1486,7082	1485,0525	1486,9594	1495
11	458,2775	509,9896	537,0293	486,4379	517	35	1497,8913	1499,1479	1499,9495	1491,2707	1508
12	709,3945	696,4174	634,4510	709,7232	709	36	1518,7693	1519,8833	1519,5516	1505,7351	1534
13	753,2590	699,1068	692,6838	718,1260	712	37	1708,3787	1701,9439	1695,2725	1708,2661	1736
14	811,0987	813,5201	831,2859	813,0684	828	38	1760,4645	1755,5605	1775,8026	1760,1722	1836
15	872,0572	867,1861	860,2457	869,0144	883	39	3017,6103	3017,2754	3017,2540	3017,6252	3062
16	879,9315	876,6262	861,0207	871,6552	898	40	3037,1602	3036,8940	3017,7480	3035,6337	3069
17	923,3368	930,2240	939,1251	918,8934	945	41	3048,2306	3049,2006	3040,1156	3058,1703	3098
18	997,3327	985,5974	992,7660	978,3076	1010	42	3057,9845	3057,7842	3058,2661	3066,3023	3123
19	1011,0277	1010,8320	1004,3058	1010,9006	1021	43	3079,7724	3080,5336	3058,5735	3094,6728	3136
20	1055,0365	1063,1222	1070,1702	1045,8510	1088	44	3101,1724	3101,0401	3099,2406	3101,0625	3147
21	1084,0108	1079,0234	1087,0572	1083,7201	1116	45	3101,2744	3102,2777	3104,4388	3105,1281	3150
22	1122,8568	1120,2725	1113,2408	1115,6477	1137	46	3110,0801	3109,6766	3115,2650	3125,2906	3160
23	1137,2133	1135,2528	1141,1052	1123,9495	1156	47	3146,6426	3158,2118	3152,7947	3147,1204	3183
24	1178,6909	1178,7164	1174,9467	1189,6919	1189	48	3174,9502	3174,9078	3188,2595	3175,8549	3212

MODELADO MECÁNO-CUÁNTICO DEL ESTADO ELECTRÓNICO BÁSICO PARA LA REACCIÓN DEL TRANS-2-BUTENOATO DE ETILO CON CLORO ATÓMICO

Figura 4. Ángulos de enlace (en grados) de los distintos radicales obtenidos por abstracción de hidrógenos.

se detallan en las tablas Nº 1, Nº 2 y Nº 3.

En la tabla Nº 4 se reportan las energías de los confórmeros con los distintos métodos. El método de dos parámetros proporciona energías más bajas que la de tres parámetros, en aproximadamente 13,5 kJ/mol. El confórmero más estable es el denominado rotámero R1, con energías relativas de 3 kJ/mol; 33 kJ/mol y 2 kJ/mol con respecto a los rotámeros R2, R3 y R4, respectivamente.

La geometría y distancias inter-átomicas del rotámero R2 coinciden con la estructura molecular utilizada por Sun *et al.*, (2016) en su

trabajo teórico con el nivel de teoría M06-2X/6-311++G(d,p)//M06-2X/6-311++G(3df,2p), para calcular constantes de velocidad de reacción de abstracción de hidrógenos y adición al doble enlace del hidroxilo.

Aunque en nuestro trabajo fue determinado que el rotámero R_1 posee la conformación más estable, la poca diferencia energética existente entre él y los rotámeros R_2 y R_4 indica que las tres estructuras tienen probabilidades similares de coexistir en equilibrio. Esta hipótesis explicaria por que Sun y colaboradores (2016) utilizaron el rotámero R_2

Figura 5. Distancias inter-átomicas (en Ångström) de los distintos radicales obtenidos por abstracción de hidrógenos.

ROLVIDEER JAVIER GONZÁLEZ HERRERA & JUAN DE DIOS GARRIDO ARRATE, PP. 132-141

Figura 6. Distancias inter-átomicas (en Angstrom) de los distintos radicales obtenidos por adición del cloro al doble enlace.

y no el confórmero R_1 en su investigación, aunque estos autores no justificaron la selección realizada, de forma que el estudio de rotámeros presentado en este trabajo resulta inédito.

La tabla Nº 5 reporta las frecuencias vibracionales armónicas de estos rotámeros.

Utilizando el rotámero R1 (Figura 1), se caracterizaron cinco radicales a partir de la abstracción de sus hidrógenos y dos radicales a partir de la adición del cloro al doble enlace >C=C<.

Los hidrógenos metilénicos H2, H3 y H4 resultaron ser equivalentes ya que condujeron a la formación del mismo radical primario, que denominaremos Ra1. La abstracción de los hidrógenos H6 y H8 condujeron a la formación de los radicales secundarios Ra2 y Ra3, respectivamente. La abstracción de H11 y H12 condujo a la formación del radical Ra4 y los hidrógenos metilénicos H14, H15 y H16 también resultaron ser equivalentes y generaron el radical Ra5. Los parámetros estructurales de los radicales obtenidos por abstracción de los hidrógenos se detallan en las figuras N° 4 y N° 5.

Las adiciones del cloro al doble enlace del carbono alfa y beta generan los radicales Ra6 y Ra7, respectivamente. Sus parámetros estructurales se observan en las figuras N° 6 y N° 7.

Las energías de los distintos radicales se detallan en la tabla Nº 6.

Entre los radicales obtenidos por abstracción de hidrógenos, el más estable es el radical Ra1 con una diferencia energética de 43kJ/mol, 73kJ/ mol, 102kJ/mol y 112kJ/mol con respecto a las energías de los radicales Ra4, Ra5, Ra2 y Ra3, respectivamente.

Entre los radicales de adición, el más estable es el formado por la adición del cloro al carbono beta. Esto era de esperarse ya que la adición al carbono alfa presenta mayor impedimento

Figura 7. Ángulos de enlace (en grados) de los distintos radicales obtenidos por adición del cloro al doble enlace.

MODELADO MECÁNO-CUÁNTICO DEL ESTADO ELECTRÓNICO BÁSICO PARA LA REACCIÓN DEL TRANS-2-BUTENOATO DE ETILO CON CLORO ATÓMICO

40	
----	--

	Energías (KJ/mol)									
Radicales	ZPVE/Aug-cc- PVTZ	E/Aug-cc-PVTZ	E/Aug-cc-PVTZ + ZPVE	CBS-TQ	CBS-TQ + ZPVE	CBS-DTQ	CBS-DTQ + ZPVE			
Ra1	362,8205	-1009814,0928	-1009451,2723	-1009937,9624	-1009575,1419	-1009924,7061	-1009561,8856			
Ra2	359,9718	-1009709,7340	-1009349,7622	-1009833,6014	-1009473,6296	-1009820,2970	-1009460,3251			
Ra3	360,9249	-1009700,0065	-1009339,0816	-1009823,9838	-1009463,0589	-1009810,6958	-1009449,7709			
Ra4	357,2334	-1009766,8019	-1009409,5684	-1009889,3294	-1009532,0959	-1009876,0424	-1009518,8089			
Ra5	356,3880	-1009735,0940	-1009378,7060	-1009859,0372	-1009502,6492	-1009845,7764	-1009489,3884			
Ra6	396,2510	-2219744,6547	-2219348,4037	-2219886,1922	-2219489,9412	-2219871,0864	-2219474,8354			
Ra7	399,4541	-2219773,6260	-2219374,1719	-2219915,7211	-2219516,2670	-2219900,6393	-2219501,1852			

Tabla 6. Energías de los distintos radicales obtenidos por la reacción del cloro con el C₆H₁₀O₂.

estérico. La diferencia energética entre ambos es de aproximadamente 26 kJ/mol.

Los radicales de adición son mucho más estables que los de abstracción. La energia relativa entre ellos es de aproximadamente 1,2.10⁶ kJ/mol.

CONCLUSIÓN

Se han caracterizado cuatro confórmeros estables del trans-2-butenoato de etilo, entre los cuales el de menor energía no ha sido reportado previamente en la literatura. Las diferencias energéticas de tres de dichos confórmeros es mínima, lo cual, según la estadística de Maxwell-Boltzmann, lleva a poblaciones similares para ellos.

Se reportan los hidrógenos que resultan equivalentes al proceso de abstracción, así como las geometrías, frecuencias y energías de los radicales formados por este proceso y por adición. Esto permite establecer un orden energético, de manera de llegar a conclusiones sobre aquellos con mayor influencia en los procesos químicos atmosféricos. De esta forma, de los cinco radicales diferentes determinados, que pueden contribuir a la formación de aerosoles atmosféricos por la vía de la abstracción de hidrógenos, el radical formado por las abstracciones de los hidrógenos del grupo metilo más próximo al doble enlace, resulta ser el más estable y, por tanto, el que posiblemente tenga mayor influencia en el proceso de degradación del COV estudiado. No hemos encontrado en la literatura especializada otro trabajo teórico describiendo todos los radicales formados en los procesos de adición del cloro al doble enlace ni de la abstracción de los hidrógenos del trans-2butanoato de etilo, como el presentado en este estudio.

REFERENCIAS

- Atkinson, R. (2000), Atmospheric chemistry of VOCs y NOx. Atmospheric Environment, 34(12–14): 2063-2101.
- Becke, A.D. (1997). Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 107:8554–8560.
- Blanco, M.B.; Barnes, I.; Wiesen, P.; Teruel, M. (2015). Kinetics of the reactions of Cl atoms with $CF_3C(O)OCH_3$, $CF_3C(O)OCH_2CH_3$, $CF_2HC(O)OCH_3$ in the temperature range of 287–313K and 1 atm. *Chem. Phys. Lett.* 638: 15-20.
- Colomer, J., Blanco, M., Peñoñory, A., Barnes, I., Wiesen, P., Teruel, M. (2013). FTIR gas-phase kinetic study on the reactions of OH radicalsand Cl atoms with unsaturated esters: Methyl-3,3-dimethyl acrylate, (E)ethyl tiglate and methyl-3-butenoate. *Rev. Elsevier. Atmos. Environ.*, 79:546-552.
- Dunning, T.H., (1971). Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the FirstRow Atoms. J. Chem. Phys.,

55:716-723.

- Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Rob, M., Cheeseman, J., Montgomery, J., Vreven, T., Kudin, K., Burant, J., Millam, J., Iyengar, S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J., Hratchian, H., Cross, J., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R., Yazyev, O., Austin, A., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P., Morokuma, K., Voth, G., Salvador, P., Dannenberg, J., Zakrzewski, V., Dapprich, S., Daniels, A., Strain, M., Farkas, O., Malick, D., Rabuck, A., Raghavachari, K., Foresman, J., Ortiz, J., Cui, Q., Baboul, A., Clifford, S., Cioslowski, J., Stefanov, B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R., Fox, D., Keith, T., Al-Laham, M., Peng, C., Nanayakkara, A., Challacombe, M., Gill, P., Johnson, B., Chen, W., Wong, M., Gonzalez, C., y Pople, J., Gaussian 03 (Gaussian, Inc., Wallingford, CT, 2003).
- Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. (1997). Basis-set convergence of correlated calculations on water. J. Chem. Phys. 106, 9639–9646.
- Helmig, D., Müller, J., & Klein, W. (1989). Volatile organic substances in a forest atmosphere. *Chemosphere*, *19*(8):1399-1412.
- Japar, S., Wallington, T., Richert, J., Ball, J. (1990). The Atmospheric Chemistry of Oxygenated Fuel Additives: t-Butyl Alcohol, Dimethyl Ether, and Methyl t-Butyl Ether. J. Int. J. Chem. Kinet., 22:1257-1269.
- Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Physical review B*, *37*(2), 785.

Olivera, R., Pfeiter, R. (2013). Modelagem Cinética

e Termodinâmica de Reações com Radical Hidroxila em Condições Atmosféricas . *Rev. Virtual Quim.*, 5 (5):853-868.

- Peterson, K.A., Woon, D.E., Dunning, T.H., Jr. Benchamark. (1994) Calculationes with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction. En J. Chem. Phys. 100:7410-7415.
- Pople, J. A., Head-Gordon, M., & Raghavachari, K. (1987). Quadratic configuration interaction.
 A general technique for determining electron correlation energies. *The Journal of chemical physics*, 87(10), 5968-5975.
- Rodríguez-Linares, D., Freitas, G., Ballester, M., Nascimento, Garrido, J. (2015). Coupled-Cluster Study of the Lower Energy Region of the Ground Electronic State of the HSO₂ Potential Energy Surface. J. Phys. Chem. A, *119* (32), pp 8734–8743.
- Sancho, J.C. (2001). La teoría del funcional densidad y las ecuaciones variacionales de Kohn-Sham:aportación de nuevos aspectos sobre sus posibilidades y limitaciones. Tesis Doctoral. Facultad de Ciencias, Universidad de Alicante. Alicante. 335 pp.
- Smith, D., Kleindienst, T., Hudgens, E., McIlver, C., Bultalini. (1991). The Photooxidation of Methyl Tertiary Butyl Ether . J. Int. J. Chem. Kinet., 23:907-924.
- Sun, S., Cheng, S., Zhang, H. (2016). Mechanism and kinetic study on the degradation of unsaturated esters initiated by OH radical. En Springer, Theor Chem Acc. 135: 154.
- Teruel, M.A.; Benitez-Villalba, J.; Caballero, N.; Blanco, M.B. (2012).Gas-Phase Oxidation of Methyl Crotonate and Ethyl Crotonate. Kinetic Study of Their Reactions toward OH Radicals and Cl Atoms. J. Phys. Chem. A. 116:6127-6133.
- Vasilyev, V. (2017). Online complete basis set limit extrapolation calculator. En *Elsevier, Computational and Theoretical Chemistry.* 1115:1-3.