DEGRADACIÓN TROPOSFÉRICA DEL 3-CLORO-2-METIL-1-PROPENO: COEFICIENTES DE VELOCIDAD CON RADICALES OH Y ÁTOMOS DE CLORO A PRESIÓN ATMOSFÉRICA Y 298K

Cynthia B. Rivela Fretes, Rodrigo G. Gibilisco, Mariano A. Teruel

Resumen


Estudios cinéticos relativos de las reacciones de los radicales OH y átomos de Cl con 3-cloro-2-metil- 1-propeno se han realizado por primera vez a 298 K y 1 atm por GC-FID. Los coeficientes de velocidad se encuentran (en cm3 molécula-1 s-1): k (OH + CH = C (CH ) CH Cl) = (3,23 ± 0,35) 10-11 , k (Cl + CH =C(CH ) CH Cl) = (2.10±0.78)×10-10 con incertidumbres que representan 2σ ±. La identificación del producto se realizó bajo condiciones atmosféricas mediante la técnica de microextracción en fase sólida (SPME) / GC-MS para la reacción OH. La Cloropropanona fue identificada como el principal producto de degradación que está en acuerdo con la descomposición del 1,2-hidroxi alcoxi del radical formado. Además, se analizan las tendencias de reactividad e implicaciones atmosféricas.


Palabras clave


degradación atmosférica, tropósfera, radicales, velocidad de reacción.

Texto completo:

PDF

Referencias


Albaladejo J.,Ballesteros B.,Jimenez E., Díaz de Mera, Martínez E. Gas-Phase OH Radical- Initiated Oxidation of the 3-halopropenes Studied by PLP-LIF in the Temperature Range. 228-388 K(a). Atmos. Environ 37(2003) 2919 – 2926.

Albaladejo J., Notario A., Cuevas C.A., Ballesteros B., Martínez E.J. A Pulsed Laser Photolysis- Resonance Fluorescence Kinetic Study of the Atmospheric Cl Atom-Initiated Oxidation of Propene and a Series of 3-Halopropenes at Room Temperature (b). Atmos. Chem. 45(2003) 35-50.

Aird R.W.S., Canosa-Mas C.E. , Cook D.J. ,Marston G. ,Monks P.S. ,Wayne R.P., Ljungstrom E.J. Temperature dependence of the reaction of the nitrate radical with but-1-ene.Chem. Soc. Faraday Trans 88 (1992) 1093 – 1099.

Atkinson R.; Baulch D.L.; Cox R.A., Hampson Jr.; Kerr R.F., Troe J.A. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. Phys. Chem. 18 (1989) 881 – 1097.

Blanco M.B., Bejan I., Barnes I., Wiesen P., Teruel M.A. Temperature-dependent rate coefficients for the reactions of Cl atoms with methyl methacrylate, methyl acrylate and butyl methacrylate at atmospheric pressure. Atmos. Environ. 43 (2009) 5996–6002.

Blanco M.B.,Taccone R.A.,Lane S.I. y Teruel M.A. On the OH-initiated degradation of methacrylates in the troposphere: Gas-phase kinetics and formation of pyruvates Chem. Phys. Lett. 429 (2006) 389.

Ezell M.J.,Wang W.,Ezell AA,Soskin G.,Finlayson 11 (1997) 43. Johnson D., Rickard A.R., McGill C.D. , Marston G.The influence of orbital asymmetry on the kinetics of the gas-phase reactions of ozone with unsaturated compounds Phys. Chem. Chem. Phys 2 (2000) 323 – 328.

Keene W.C., Jacob D.J., Fan S.M., Atmos. Environ. Reactive chlorine: A potential sink for dimethylsulfide and hydrocarbons in the marine boundary layer 30 (1996)1.

Kwok E. C., Atkinson R. Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure−re- activity relationship Atmos. Environ. 29 (1995) 1685.

Mellouki A., Le Bras G. y Sidebottom H. Kinetics and mechanisms of the oxidation of oxygenated organic compounds in the gas phase. Chem. Rev.103 (2003) 5077.

Meylan W. M., Howard P. H. Computer estimation of the Atmospheric gas-phase reaction rate of organic compounds with hydroxyl radicals and ozono. Chemosphere 26 (1993) 2293.

Mielke L.H., Furgeson A. y Osthoff H.D. Obser-vation of ClNO

Pitts BJ. Kinetics of reactions of chlorine in a mid-continental urban atoms with a series of alkenes at 1 atm and 298 K: structure and reactivity Phys. Chem. Chem. Phys. 4 (2002b) 5813–5820.

Ferrari C.,Roche A.,Jacob V.,Foster P.,Baussand P. Kinetics of the reaction of OH radicals with a series of esters under simulated conditions at 295 K International Journal of Chemical Kinetics 28(1996) 609–614.

Finlayson-Pitts B.J. Res. Chem. Intermed. Chlorine atoms as a potential tropospheric oxidant in the marine boundary layer 19 (1993) 235.

Grosjean D.,Williams E.L. Environmental persistence of organic compounds estimated from structure-reactivity and linear free-energy relationships Atmos. Environ. Part A 26 (1992) 1395 – 1405.

Hein R.,Crutzen P.J.,Heimann M. An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemical Cycles Global Biogeochem. Cycles environment. Environ. Sci. Technol., 45 (2011) 8889–8896.

Moortgat G. Ed. Chemical, Physical and Biogenic Processes in the Atmosphere. COACH International Research School, Obernai, France, (2001).

Teruel M. A., Achad M., Blanco M.B. Kinetic study of the reactions of Cl atoms with α-β-unsaturated carbonyl compounds at atmospheric pressure and structure activity relations (SARs). Phys. Chem. Lett. 479 (2009) 25-29.

Thornton J. A., Kercher J. P., Riedel T. P, Wagner N. L., Cozic J., Holloway S., Dube W. P., Wolfe G.M., Quinn P.K., Middlebrook A.M., Alexander B., Brown S. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 464 (2010)271– 274.

Tuazon E.C., Atkinson R., Aschmann S.M. Kinetics and products of the gas-phase reactions of the OH radical and O3 with allyl chloride and benzyl chloride at room Int. J. Chem. Kinet. 22 (1990).

U.S. Department of Health and Human Services Secretary Kathleen Sebelius released the 12th Report on Carcinogens on June 10, (2011). Disponible a partir de: http://ntp.niehs.nih.gov/ntp/roc/twelfth/roc12.

Wingenter O.W., Kubo M.K., Blake N.J., Smith T.W., Blake D.R., Rowland F.S. Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrangian flights Geophys. Res.101 (1996) 4331.


Enlaces refback

  • No hay ningún enlace refback.


Dirección de Investigación. Facultad de Ciencias Exactas y Naturales. Universidad Nacional de Asunción

C.P. 1039  San Lorenzo - Paraguay